Directory of Open Access Journals (Sweden)
Grutsch James F
2008-06-01
Full Text Available Abstract Background Bioelectrical Impedance (BIA derived phase angle is increasingly being used as an objective indicator of nutritional status in advanced cancer. Subjective Global Assessment (SGA is a subjective method of nutritional status. The objective of this study was to investigate the association between BIA derived phase angle and SGA in advanced colorectal cancer. Methods We evaluated a case series of 73 stages III and IV colorectal cancer patients. Patients were classified as either well-nourished or malnourished using the SGA. BIA was conducted on all patients and phase angle was calculated. The correlation between phase angle and SGA was studied using Spearman correlation coefficient. Receiver Operating Characteristic curves were estimated using the non-parametric method to determine the optimal cut-off levels of phase angle. Results Well-nourished patients had a statistically significantly higher (p = 0.005 median phase angle score (6.12 as compared to those who were malnourished (5.18. The Spearman rank correlation coefficient between phase angle and SGA was found to be 0.33 (p = 0.004, suggesting better nutritional status with higher phase angle scores. A phase angle cut-off of 5.2 was 51.7% sensitive and 79.5% specific whereas a cut-off of 6.0 was 82.8% sensitive and 54.5% specific in detecting malnutrition. Interestingly, a phase angle cut-off of 5.9 demonstrated high diagnostic accuracy in males who had failed primary treatment for advanced colorectal cancer. Conclusion Our study suggests that bioimpedance phase angle is a potential nutritional indicator in advanced colorectal cancer. Further research is needed to elucidate the optimal cut-off levels of phase angle that can be incorporated into the oncology clinic for better nutritional evaluation and management.
Directory of Open Access Journals (Sweden)
Grutsch James F
2009-01-01
Full Text Available Abstract Background A frequent manifestation of advanced lung cancer is malnutrition, timely identification and treatment of which can lead to improved patient outcomes. Bioelectrical impedance analysis (BIA is an easy-to-use and non-invasive technique to evaluate changes in body composition and nutritional status. We investigated the prognostic role of BIA-derived phase angle in advanced non-small cell lung cancer (NSCLC. Methods A case series of 165 stages IIIB and IV NSCLC patients treated at our center. The Kaplan Meier method was used to calculate survival. Cox proportional hazard models were constructed to evaluate the prognostic effect of phase angle, independent of stage at diagnosis and prior treatment history. Results 93 were males and 72 females. 61 had stage IIIB disease at diagnosis while 104 had stage IV. The median phase angle was 5.3 degrees (range = 2.9 – 8. Patients with phase angle 5.3 had 12.4 months (95% CI: 10.5 to 18.7; n = 84; (p = 0.02. After adjusting for age, stage at diagnosis and prior treatment history we found that every one degree increase in phase angle was associated with a relative risk of 0.79 (95% CI: 0.64 to 0.97, P = 0.02. Conclusion We found BIA-derived phase angle to be an independent prognostic indicator in patients with stage IIIB and IV NSCLC. Nutritional interventions targeted at improving phase angle could potentially lead to an improved survival in patients with advanced NSCLC.
Standing phase angle reduction for power system restoration
Energy Technology Data Exchange (ETDEWEB)
Hazarika, D. [Assam Engineering College (India). Electrical Engineering Dept.; Sinha, A.K. [IIT Khargpur (India). Electrical Engineering Dept.
1998-01-01
The paper describes a methodology for the reduction of standing phase angle (SPA) difference between two buses of a power system, which is essential before interconnecting a line between two buses. This problem is encountered normally during restoration operations of a power system. For this purpose, the standing phase angle difference between two specific buses is represented in terms of sensitivity factors associated with the change in real power injections at the buses. To arrive at the desired standing phase angle difference between two buses, the modified contribution at generation/load buses have been evaluated based on 'higher the sensitivity higher the participation' logic. This methodology acts as a direct help to reduce excessive SPA difference between two buses to an acceptable limit, which otherwise requires regulation of various generation levels on a trial and error basis. (author)
left-angle 100 right-angle Burgers vector in single phase γ' material verified by image simulation
International Nuclear Information System (INIS)
Link, T.; Knobloch, C.; Glatzel, U.
1998-01-01
The deformation mechanisms of Ni 3 Al, an ordered L1 2 or γ' phase, is under intense research since Westbrook showed the increase of its hardness with temperature in 1957. The super dislocations of this ordered phase normally have Burgers vectors rvec b = a left-angle 110 right-angle, disassociated in either two a/2 left-angle 110 right-angle or two rvec b = a/3 left-angle 112 right-angle, depending on deformation temperature and rate. Recent observations in [111] oriented γ' specimens suggest that additional dislocations with the shorter Burgers vector rvec b = a left-angle 100 right-angle might be active. Dislocations with rvec b = a left-angle 110 right-angle on cube glide planes have a Schmidt factor of 0.47 and on octahedral planes of 0.27. Dislocations with rvec b = a left-angle 100 right-angle have a Schmidt factor of 0.47 for {110} glide planes and 0.33 for cube glide planes. The a left-angle 100 right-angle Burgers vector is the shortest of all complete dislocations of the L1 2 structure and creates no planar fault like antiphase boundaries or stacking faults. Due to the [111] oriented stress axis, which is used in this contribution, plastic deformation by a left-angle 100 right-angle dislocations as well as cube glide planes for left-angle 110 right-angle dislocations is encouraged. These dislocations could be reaction products, but will soon after contribute to deformation
Directory of Open Access Journals (Sweden)
Stephanie J Crowley
Full Text Available The aim of this descriptive analysis was to examine sleep timing, circadian phase, and phase angle of entrainment across adolescence in a longitudinal study design. Ninety-four adolescents participated; 38 (21 boys were 9-10 years ("younger cohort" and 56 (30 boys were 15-16 years ("older cohort" at the baseline assessment. Participants completed a baseline and then follow-up assessments approximately every six months for 2.5 years. At each assessment, participants wore a wrist actigraph for at least one week at home to measure self-selected sleep timing before salivary dim light melatonin onset (DLMO phase - a marker of the circadian timing system - was measured in the laboratory. Weekday and weekend sleep onset and offset and weekend-weekday differences were derived from actigraphy. Phase angles were the time durations from DLMO to weekday sleep onset and offset times. Each cohort showed later sleep onset (weekend and weekday, later weekend sleep offset, and later DLMO with age. Weekday sleep offset shifted earlier with age in the younger cohort and later in the older cohort after age 17. Weekend-weekday sleep offset differences increased with age in the younger cohort and decreased in the older cohort after age 17. DLMO to sleep offset phase angle narrowed with age in the younger cohort and became broader in the older cohort. The older cohort had a wider sleep onset phase angle compared to the younger cohort; however, an age-related phase angle increase was seen in the younger cohort only. Individual differences were seen in these developmental trajectories. This descriptive study indicated that circadian phase and self-selected sleep delayed across adolescence, though school-day sleep offset advanced until no longer in high school, whereupon offset was later. Phase angle changes are described as an interaction of developmental changes in sleep regulation interacting with psychosocial factors (e.g., bedtime autonomy.
Precise determination of lattice phase shifts and mixing angles
Energy Technology Data Exchange (ETDEWEB)
Lu, Bing-Nan, E-mail: b.lu@fz-juelich.de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lähde, Timo A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lee, Dean [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Meißner, Ulf-G. [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA – High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich (Germany)
2016-09-10
We introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.
PHASE ANGLE EFFECTS ON 3 μm ABSORPTION BAND ON CERES: IMPLICATIONS FOR DAWN MISSION
Energy Technology Data Exchange (ETDEWEB)
Takir, D.; Reddy, V.; Sanchez, J. A.; Corre, L. Le [Planetary Science Institute, 1700 E Fort Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Hardersen, P. S. [Department of Space Studies, University of North Dakota, Grand Forks, ND 58202 (United States); Nathues, A., E-mail: dtakir@psi.edu [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)
2015-05-01
Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25–5.0 μm. Ceres has an absorption feature at 3.0 μm due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 μm absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9–4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 μm at lower phase angles (0.°7 and 6°) to 3.07 μm at higher phase angles (11° and 22°), the band depth decreases by ∼20% from lower phase angles to higher phase angles, and the band area decreases by ∼25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015.
PHASE ANGLE EFFECTS ON 3 μm ABSORPTION BAND ON CERES: IMPLICATIONS FOR DAWN MISSION
International Nuclear Information System (INIS)
Takir, D.; Reddy, V.; Sanchez, J. A.; Corre, L. Le; Hardersen, P. S.; Nathues, A.
2015-01-01
Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25–5.0 μm. Ceres has an absorption feature at 3.0 μm due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 μm absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9–4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 μm at lower phase angles (0.°7 and 6°) to 3.07 μm at higher phase angles (11° and 22°), the band depth decreases by ∼20% from lower phase angles to higher phase angles, and the band area decreases by ∼25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015
NEAs: Phase Angle Dependence of Asteroid Class and Diameter from Observational Studies
Wooden, Diane H.; Lederer, Susan M.; Bus, Schlete; Tokunaga, Alan; Jehin, Emmanuel; Howell, Ellen S.; Nolan, Michael C.; Ryan, Erin; Fernandez, Yan; Harker, David;
2015-01-01
We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the
Relationship between segmental and whole-body phase angle in peritoneal dialysis patients
International Nuclear Information System (INIS)
Nescolarde, L; Rosell-Ferrer, J; Doñate, T
2008-01-01
The relation between the right-side (RS) electrical impedance phase angle (PA) and segmental PA in five configurations at 50 kHz was analyzed in 23 peritoneal dialysis male patients before complete drainage of the abdominal cavity. The impedance vector (Z/H) components were standardized by the height H of the subjects (R/H and Xc/H). BIVA software was used to analyze the individual RS vector. The Pearson correlation was used to analyze the correlation between RS and segmental configurations. Student's t test and Hotelling's T 2 test were used to analyze the separation of groups obtained by BIVA. The highest significant Pearson correlation was between RS and right leg total (RLEGT) in a longitudinal direction (r = 0.925, P 2 test, and in PA using Student's t test. The transverse measurement in the leg (RTRLEG) showed the lowest correlation (r = 0.261). In conclusion, we can obtain similar information through the phase angle, whether RS is measured or if we measure on RLEGT. The phase angle of the transverse measurements provides different information from the phase angle of the longitudinal measurements. (note)
Directory of Open Access Journals (Sweden)
Hirohisa Kishi
2013-10-01
Full Text Available ABSTRACT: Objective: Anserine, which is abundant in avian species and in a wide range of fish such as bonito and tuna, is reported to have anti-fatigue effect. Although chicken soup and bonito soup is traditionally used to recover from physical fatigue, it is generally difficult to verify the effect in humans. This study was to directly demonstrate the anti-fatigue effect of oceanic anserine in humans. Methods: Edible-grade anserine was purified from fish extract with food-grade reagents. Subjects were 17 healthy male volunteers (35.5 ± 5 yr., 75.5 ± 5.0 kg. Each subject performed the isometric exercise tolerance test (ETT on the rectus femoris muscle twice (Ex_1, Ex_2 both for anserine and water conditions on a different day. Median frequency changes (MDF during Functional Foods in Health and Disease 2013; 3(10 389-399 ETTs were calculated and regression curves were calculated over a frequency range of 21-214 Hz. The difference, or angle, between the slopes of Ex_1 and Ex_2 MDF regression curves, which corresponds to the degree of fatigue, was defined as an angle fatigue index and compared between anserine and water intake conditions. Results: MDF decreased during ETTs in most patients and the slopes of regression curves were larger in Ex_2 than in Ex_1. Angle fatigue index for water (control was significantly larger than that for anserine (p<0.01, paired t-test, n=17. The result indicates that anserine have an anti-fatigue effect on skeletal muscle in humans. Conclusions: We proposed the angle fatigue index as a touchstone of the muscle fatigue. The index indicates that anserine is effective to reduce the muscle fatigue in humans.
Solar-phase-angle effects on the taxonomic classification of asteroids
Carvano, J.; Davallos, J.
2014-07-01
Survey is affected by the solar phase angle of the observation. It is found that the number of observations assigned to several taxonomic classes has a clear dependency on the solar phase angle of the asteroid at the moment of the observation. In order to understand how variations of phase angles affect the reflectance spectra of the individual asteroids listed in the SDSS with multiple observations, we use the reflectance spectra derived from the SDSS colors to define two parameters, which measure the spectral slope in the visible and the depth of the 1-micron band, if present. It is found that most asteroids in the sample tend to be redder at higher phase angles, and that, for the classes showing a 1-μ m band, most show increasing band depth with increasing phase angle. This predominance of positive correlations for both band depth and spectral slope might suffice to explain the offsets in the distribution of classes. However, for both parameters there is a significant fraction in each sample for which there seem to be no correlation at all, and a comparable number seem to display anti-correlation between the parameters and the phase angle. Therefore, although phase-reddening effects, as currently understood in the literature, can account for the offsets in the distribution of taxonomic classes with phase angle, it cannot explain all variability seen in the SDSS data. There is also a dependency on composition and also shape effects involved, which can be reproduced using Hapke reflectance models.
Application of phase angle for evaluation of the nutrition status of patients with anorexia nervosa.
Małecka-Massalska, Teresa; Popiołek, Joanna; Teter, Mariusz; Homa-Mlak, Iwona; Dec, Mariola; Makarewicz, Agata; Karakuła-Juchnowicz, Hanna
2017-12-30
The evaluation of the nutrition status of patients has been the subject of interest of many scientific disciplines. Any deviation from normal values is a serious clinical problem. There are multiple nutrition status evaluation methods used including diet history, scales and questionnaires, physical examination, anthropometric measurements, biochemical measurements, function tests, as well as bioelectric impedance analysis or adipometry. Phase angle, obtained by means of bioelectric impedance analysis, is another parameter that is being more and more frequently applied in nutrition status monitoring. It is proportional to body cell mass. Its direct correlation with the cellular nutrition status has been documented. High phase angle values signify well-being, while low phase angle values indicate poor condition of cells. The purpose of this paper was to review the current state of knowledge about the application of phase angle in evaluation and monitoring of the nutrition status of patients with anorexia nervosa on the basis of available literature. It was proven that the phase angle values in patients with anorexia nervosa are much lower compared to healthy people. Detailed observations showed phase angle value increase in the course of treatment. The relevance of the commonly used body mass index (BMI) has been questioned due to significant degree of generalization in the nutrition status evaluation. Thus, there is a need for new, objective parameters for nutrition status evaluation, which will assist in the treatment and monitoring of patients in a more meaningful and reliable way. The existing independent studies equivocally confirm the usefulness of phase angle in the evaluation of nutrition status of patients with anorexia nervosa and its broader application in clinical practice is only a matter of time. However, these are merely attempts and they have not yet found wider application in clinical practice in the treatment of anorexia nervosa.
Diamagneto-Dielectric Anisotropic Wide Angle Impedance Matching Layers for Active Phased Arrays
Silvestri, F.; Cifola, L.; Gerini, G.
2016-01-01
In this paper, we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in
Diamagneto-dielectric anisotropic wide angle impedance matching layers for active phased arrays
Silvestri, F.; Cifola, L.; Gerini, G.
2016-01-01
In this paper we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in
Full-angle tomographic phase microscopy of flowing quasi-spherical cells.
Villone, Massimiliano M; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Miccio, Lisa; Maffettone, Pier Luca; Ferraro, Pietro
2017-12-19
We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.
Electroacupuncture and Acupuncture Promote the Rat’s Transected Median Nerve Regeneration
Ho, C. Y.; Yao, C. H.; Chen, W. C.; Shen, W. C.; Bau, D. T.
2013-01-01
Background. Acupuncture and electroacupuncture treatments of damaged nerves may aid nerve regeneration related to hindlimb function, but the effects on the forelimb-related median nerve were not known. Methods. A gap was made in the median nerve of each rat by suturing the stumps into silicone rubber tubes. The influences of acupuncture and electroacupuncture treatments on transected median nerve regeneration were evaluated from morphological, electrophysiological, and functional angles. Resu...
Small angle neutron scattering form polymer melts: structural investigation and phase behaviour
International Nuclear Information System (INIS)
Ertugrul, O.
2004-01-01
The Small-Angle Neutron Scattering (SANS) techniques have been used to study the structural properties and phase behavior of polymer melts. A model based on Random Phase Approximation (RPA) is proposed to predict the experimental data. By fitting the model to data we could be able to obtain radius of gyration (a measure of size of a polymer) and phase transition for the sample. (author)
Gupta, Digant; Lis, Christopher G; Dahlk, Sadie L; King, Jessica; Vashi, Pankaj G; Grutsch, James F; Lammersfeld, Carolyn A
2008-01-01
Abstract Background Bioelectrical Impedance (BIA) derived phase angle is increasingly being used as an objective indicator of nutritional status in advanced cancer. Subjective Global Assessment (SGA) is a subjective method of nutritional status. The objective of this study was to investigate the association between BIA derived phase angle and SGA in advanced colorectal cancer. Methods We evaluated a case series of 73 stages III and IV colorectal cancer patients. Patients were classified as ei...
Maleszewski, C.; McMillan, R.; Smith, P.
2012-12-01
We are measuring the polarization of asteroids with the SPOL polarimeter of Steward Observatory. With monthly access to the instrument, we can obtain many observations throughout phase angle. This is in contrast to other recent work that had to rely on aggregate properties of targets of similar taxonomic type. Comparing individual objects to these aggregate results may reveal differences of regolith properties from object to object. Both the phase angle and spectral dependence of polarization are being measured. SPOL provides simultaneous coverage from 0.40-0.75 microns, equivalent to BVR filters. Three phase curves thus reveal differences of phase angle dependences with respect to wavelength. The spectral dependence of the linear polarization is determined according to a linear trend previously used to describe the dependence for Main Belt Asteroids (MBAs) in various taxonomic classes (Belskaya et al. 2009). The slopes of these linear trends vs. phase angle are also investigated as was also done in the Belskaya analysis for MBAs in the C-, M-, and S-types. Two initial objects of interest are the NEAs (1036) Ganymed and (5143) Heracles. The taxonomic types of Ganymed and Heracles are S-type and Q-type respectively (DeMeo et al. 2009). For Ganymed, twelve observations were made between 2011 September and 2012 March. These include observations below ten degrees phase angle, which are currently lacking in the polarimetric databases. The positive branch of Ganymed's polarization phase curve behaved similarly across SPOL's wavelength range. But for wavelengths associated with a typical B-filter, the negative branch is more shallow and narrow. The negative phase branch of Ganymed is smaller compared to the aggregate phase curve of S-types determined by Gil-Hutton and Cañada-Assandri (2011). The linear polarization decreases with increasing wavelength at all observed phase angles. As the phase angle increases, the slope of the wavelength dependence of polarization
GPS synchronized power system phase angle measurements
Wilson, Robert E.; Sterlina, Patrick S.
1994-09-01
This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.
CUTOFF POINT OF THE PHASE ANGLE IN PRE-RADIOTHERAPY CANCER PATIENTS.
Souza Thompson Motta, Rachel; Alves Castanho, Ivany; Guillermo Coca Velarde, Luis
2015-11-01
malnutrition is a common complication for cancer patients. The phase angle (PA), direct measurement of bioelectrical impedance analysis (BIA), has been considered a predictor of body cell mass and prognostic indicator. Cutoff points for phase angle (PA) associated with nutritional risk in cancer patients have not been determined yet. assess the possibility of determining the cutoff point for PA to identify nutritional risk in pre-radiotherapy cancer patients. sample group: Patients from both genders diagnosed with cancer and sent for ambulatory radiotherapy. body mass index (BMI), percentage of weight loss (% WL), mid-arm circumference (MAC), triceps skinfold thickness (TST), mid-arm muscle circumference (MAMC), mid-arm muscle area (MAMA), score and categorical assessment obtained using the Patient-Generated Subjective Global Assessment (PG-SGA) form, PA and standardized phase angle (SPA). Kappa coefficient was used to test the degree of agreement between the diagnoses of nutritional risk obtained from several different methods of nutritional assessment. Cutoff points for the PA through anthropometric indicators and PG-SGA were determined by using Receiver Operating Characteristic (ROC) curves, and patient survival was analyzed with the Cox regression method. the cutoff points with the greatest discriminatory power were those obtained from BMI (5.2) and the categorical assessment of PG-SGA (5.4). The diagnosis obtained using these cutoff points showed a significant association with risk of death for the patients in the sample group. we recommend using the cutoff point 5.2 for the PA as a criterion for identifying nutritional risk in pre-radiotherapy cancer patients. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Regularization of DT-MRI Using 3D Median Filtering Methods
Directory of Open Access Journals (Sweden)
Soondong Kwon
2014-01-01
Full Text Available DT-MRI (diffusion tensor magnetic resonance imaging tractography is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of the principal eigenvectors obtained from tensor matrix, which is different from the conventional isotropic MRI. Tractography based on DT-MRI is known to need many computations and is highly sensitive to noise. Hence, adequate regularization methods, such as image processing techniques, are in demand. Among many regularization methods we are interested in the median filtering method. In this paper, we extended two-dimensional median filters already developed to three-dimensional median filters. We compared four median filtering methods which are two-dimensional simple median method (SM2D, two-dimensional successive Fermat method (SF2D, three-dimensional simple median method (SM3D, and three-dimensional successive Fermat method (SF3D. Three kinds of synthetic data with different altitude angles from axial slices and one kind of human data from MR scanner are considered for numerical implementation by the four filtering methods.
International Nuclear Information System (INIS)
Chang Tiejun; Tian Mingzhen; Barber, Zeb W.; Randall Babbitt, Wm.
2004-01-01
This work is a continuation of the development of the theoretical model for optical coherent transient (OCT) processes with complex configurations. A theoretical model for angled beams with arbitrary phase modulation has been developed based on the model presented in our previous work for the angled beam geometry. A numerical tool has been devised to simulate the OCT processes involving angled beams with the frequency detuning, chirped, and phase-modulated laser pulses. The simulations for pulse shaping and arbitrary waveform generation (AWG) using OCT processes have been performed. The theoretical analysis of programming and probe schemes for pulse shaper and AWG is also presented including the discussions on the rephasing condition and the phase compensation. The results from the analysis, the simulation, and the experiment show very good agreement
Pileggi, Vicky Nogueira; Scalize, Antonio Rodolpho Hakime; Camelo Junior, José Simon
2016-12-01
To compare the phase angle of patients with osteogenesis imperfecta treated at a tertiary university hospital with patients in a control group of healthy children, and to assess the nutritional status of these patients through the body mass index proposed by the World Health Organization. Cross-sectional study carried out in a university hospital that included seven patients with osteogenesis imperfecta and a control group of 17 healthy children of the same gender and age. Weight and height were measured and bioelectrical impedance was performed. Subsequently, the phase angle was calculated based on resistance and reactance values. The phase angle of the group of children with osteogenesis imperfecta was significantly lower than that of the control group (posteogenesis imperfecta have a nutritional risk detected by the phase angle, which is a useful tool for nutritional screening. The calculation result could help in the diet therapy of patients with osteogenesis imperfecta. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study.
Barrea, Luigi; Muscogiuri, Giovanna; Macchia, Paolo Emidio; Di Somma, Carolina; Falco, Andrea; Savanelli, Maria Cristina; Colao, Annamaria; Savastano, Silvia
2017-02-17
The Mediterranean diet is a healthy dietary pattern known to actively modulate the cell membrane properties. Phase angle (PhA) is a direct measure by Bioelectrical Impedance Analysis (BIA) used as marker of cell membrane integrity. Both food behaviour and PhA are influenced by age, sex and body weight. The aim of this study was to cross-sectionally evaluate the association between the adherence to Mediterranean diet and PhA in 1013 healthy adult patients stratified according to sex, age, and body mass index (BMI). The adherence to the Mediterranean diet was evaluated using the PREvención con DIeta MEDiterránea (PREDIMED) questionnaire. PhA was calculated by BIA phase-sensitive system (50 kHz BIA 101 RJL, Akern Bioresearch, Florence, Italy Akern). In both sexes, at ROC analysis a PREDIMED score ≥ 6 predicted a PhA beyond the median value. At the multivariate analysis, among PREDIMED score, age, and BMI, the PREDIMED score was the major determinant of PhA, explaining 44.5% and 47.3% of PhA variability, in males and females respectively ( p Mediterranean diet and PhA, independently of sex, age, and body weight. This association uncovered a new potential benefit of the Mediterranean diet on health outcomes, as in both sexes higher adherence to the Mediterranean diet was associated to larger PhAs, as expression of cell membrane integrity.
Effect of vision angle on the phase transition in flocking behavior of animal groups
Nguyen, P. The; Lee, Sang-Hee; Ngo, V. Thanh
2015-09-01
The nature of the phase transition in a system of self-propelling particles has been extensively studied during the past few decades. A theoretical model was proposed by [T. Vicsek et al. Phys. Rev. Lett. 75, 1226 (1995), 10.1103/PhysRevLett.75.1226] with a simple rule for updating the direction of motion of each particle. Based on the model of Vicsek et al., in this paper, we consider a group of animals as particles moving freely in a two-dimensional space. Due to the fact that the viewable area of animals depends on the species, we consider the motion of each individual within an angle φ =ϕ /2 (ϕ is called the angle of view) of a circle centered at its position of radius R . We obtained a phase diagram in the space (φ ,ηc ) with ηc being the critical noise. We show that the phase transition exists only in the case of a wide view's angle φ ≥0.5 π . The flocking of animals is a universal behavior of the species of prey but not the one of the predator. Our simulation results are in good agreement with experimental observation [C. Beccoa et al., Physica A 367, 487 (2006), 10.1016/j.physa.2005.11.041].
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Howell, Ellen S.; Fernandez, Yan; Harker, David E.; Ryan, Erin; Lovell, Amy; Woodward, Charles E.; Benner, Lance A.
2015-01-01
Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles greater than 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10 micrometer UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.
Effect of vision angle on the phase transition in flocking behavior of animal groups.
Nguyen, P The; Lee, Sang-Hee; Ngo, V Thanh
2015-09-01
The nature of the phase transition in a system of self-propelling particles has been extensively studied during the past few decades. A theoretical model was proposed by [T. Vicsek et al. Phys. Rev. Lett. 75, 1226 (1995)PRLTAO0031-900710.1103/PhysRevLett.75.1226] with a simple rule for updating the direction of motion of each particle. Based on the model of Vicsek et al., in this paper, we consider a group of animals as particles moving freely in a two-dimensional space. Due to the fact that the viewable area of animals depends on the species, we consider the motion of each individual within an angle φ=ϕ/2 (ϕ is called the angle of view) of a circle centered at its position of radius R. We obtained a phase diagram in the space (φ,η_{c}) with η_{c} being the critical noise. We show that the phase transition exists only in the case of a wide view's angle φ≥0.5π. The flocking of animals is a universal behavior of the species of prey but not the one of the predator. Our simulation results are in good agreement with experimental observation [C. Beccoa et al., Physica A 367, 487 (2006)PHYADX0378-437110.1016/j.physa.2005.11.041].
International Nuclear Information System (INIS)
Meneau, F.; Greaves, G.N.
2005-01-01
In situ experiments following the thermal amorphisation of zeolites reveal massive increases in small angle X-ray scattering (SAXS), persisting well beyond the stage where wide angle X-ray scattering (WAXS) can detect that any crystalline phase is present. This heterogeneity in the amorphised phase is attributed to the transition from a low density amorphous phase (LDA) to a high density amorphous phase (HDA) at the glass transition. The fractions of zeolite, LDA and HDA phases obtained from SAXS analysis are discussed in the context of non-linear changes detected in 29 Si solid state NMR during zeolite amorphisation. Whilst the HDA phase is chemically disordered, the LDA phase exhibits much of the Al-Si ordering present in the starting zeolite. These findings are considered in the context of perfect glasses predicted to occur when super strong liquids are supercooled
Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study
Directory of Open Access Journals (Sweden)
Luigi Barrea
2017-02-01
Full Text Available The Mediterranean diet is a healthy dietary pattern known to actively modulate the cell membrane properties. Phase angle (PhA is a direct measure by Bioelectrical Impedance Analysis (BIA used as marker of cell membrane integrity. Both food behaviour and PhA are influenced by age, sex and body weight. The aim of this study was to cross-sectionally evaluate the association between the adherence to Mediterranean diet and PhA in 1013 healthy adult patients stratified according to sex, age, and body mass index (BMI. The adherence to the Mediterranean diet was evaluated using the PREvención con DIeta MEDiterránea (PREDIMED questionnaire. PhA was calculated by BIA phase-sensitive system (50 kHz BIA 101 RJL, Akern Bioresearch, Florence, Italy Akern. In both sexes, at ROC analysis a PREDIMED score ≥ 6 predicted a PhA beyond the median value. At the multivariate analysis, among PREDIMED score, age, and BMI, the PREDIMED score was the major determinant of PhA, explaining 44.5% and 47.3% of PhA variability, in males and females respectively (p < 0.001. A novel association was reported between the adherence to the Mediterranean diet and PhA, independently of sex, age, and body weight. This association uncovered a new potential benefit of the Mediterranean diet on health outcomes, as in both sexes higher adherence to the Mediterranean diet was associated to larger PhAs, as expression of cell membrane integrity.
Interferometer angle-of-arrival determination using precalculated phases
Younger, J. P.; Reid, I. M.
2017-09-01
A method has been developed to determine the angle of arrival (AoA) of incident radiation using precomputed lookup tables. The phase difference between two receiving antennas can be used to infer AoA as measured from the pair baseline, but there will be more than one possible solution for antenna spacings greater than or equal to half a wavelength. Larger spacings are preferable to minimize mutual coupling of elements in the receive array and to decrease the relative uncertainty in measured phase difference. We present a solution that uses all unique antenna pairs to determine probabilities for all possible azimuth and zenith values. Prior to analysis, the expected phase differences for all AoAs are calculated for each antenna pair. For a received signal, histograms of possible AoAs for each antenna pair phase difference are extracted and added to produce a two-dimensional probability density array that will maximize at the true value of the AoA. A benefit of this method is that all possible antenna pairs are utilized rather than the restriction to specific pairs along baselines used by some interferometer algorithms. Numerical simulations indicate that performance of the suggested algorithm exceeds that of existing methods, with the benefit of additional flexibility in antenna placement. Meteor radar data have been used to test this method against existing methods, with excellent agreement between the two approaches. This method of AoA determination will allow the construction of low-cost interferometric direction finding arrays with different layouts, including construction of difficult terrain and three-dimensional antenna arrangements.
Parenteral nutrition support for patients with pancreatic cancer. Results of a phase II study
Directory of Open Access Journals (Sweden)
Riess Hanno
2010-03-01
Full Text Available Abstract Background Cachexia is a common problem in patients (pts suffering from upper gastrointestinal cancer. In addition, most of these patients suffer from malabsorption and stenosis of the gastrointestinal tract due to their illness. Various methods of supplementary nutrition (enteral, parenteral are practised. In patients with advanced pancreatic cancer (APC, phase angle, determined by bio-electrical impedance analysis (BIA, seems to be a survival predictor. The positive influence of BIA determinate predictors by additional nutrition is currently under discussion. Methods To examine the impact of additional parenteral nutrition (APN we assessed outpatients suffering from APC and progressive cachexia. The assessment based on the BIA method. Assessment parameters were phase angle, ECM/BCM index (ratio of extracellular mass to body cell mass, and BMI (body mass index. Patients suffering from progressive weight loss in spite of additional enteral nutritional support were eligible for the study. Results Median treatment duration in 32 pts was 18 [8-35] weeks. Response evaluation showed a benefit in 27 pts (84% in at least one parameter. 14 pts (43.7% improved or stabilised in all three parameters. The median ECM/BCM index was 1.7 [1.11-3.14] at start of APN and improved down to 1.5 [1.12-3.36] during therapy. The median BMI increased from 19.7 [14.4-25.9] to 20.5 [15.4-25.0]. The median phase angle improved by 10% from 3.6 [2.3-5.1] to 3.9 [2.2-5.1]. Conclusions We demonstrated the positive impact of APN on the assessed parameters, first of all the phase angle, and we observed at least a temporary benefit or stabilisation of the nutritional status in the majority of the investigated patients. Based on these findings we are currently investigating the impact of APN on survival in a larger patient cohort. Trial registration ClinicalTrials.gov Identifier: NCT00919659
Optimal Design of an Achromatic Angle-Insensitive Phase Retarder Used in MWIR Imaging Polarimetry
International Nuclear Information System (INIS)
Guo-Guo, Kang; Qiao-Feng, Tan; Guo-Fan, Jin
2009-01-01
Dielectric gratings with period in the range from λ/10 to λ/4 with λ being the illumination wavelength not only exclude higher order diffractions but also exhibit strong dispersion of effective indices which are proportional to the wavelength. Moreover, they are insensitive to the incident angle of the illumination wave. With these features, we can design a true zero-order achromatic and angle-insensitive phase retarder which can be used as the polarization state analyzer in middle wave infrared (MWIR) imaging polarimetry. A design method using effective medium theory is described, and the performance of the designed phase retarder is evaluated by rigorous coupled wave analysis theory. The calculation results demonstrate that the retardance deviates from 45° by < ±1.6° within a field of view ±10° over the MWIR bandwidth (3–5 μm). (fundamental areas of phenomenology (including applications))
Limited-angle tomography for analyzer-based phase-contrast x-ray imaging
International Nuclear Information System (INIS)
Majidi, Keivan; Wernick, Miles N; Brankov, Jovan G; Li, Jun; Muehleman, Carol
2014-01-01
Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT
Limited-angle tomography for analyzer-based phase-contrast x-ray imaging
Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.
2014-07-01
Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT
Angle measurement with laser feedback instrument.
Chen, Wenxue; Zhang, Shulian; Long, Xingwu
2013-04-08
An instrument for angle measurement based on laser feedback has been designed. The measurement technique is based on the principle that when a wave plate placed into a feedback cavity rotates, its phase retardation varies. Phase retardation is a function of the rotating angle of the wave plate. Hence, the angle can be converted to phase retardation. The phase retardation is measured at certain characteristic points identified in the laser outputting curve that are then modulated by laser feedback. The angle of a rotating object can be measured if it is connected to the wave plate. The main advantages of this instrument are: high resolution, compact, flexible, low cost, effective power, and fast response.
High Efficiency Large-Angle Pancharatnam Phase Deflector Based on Dual Twist Design
2016-12-16
construction and characterization of a ±40° beam steering device with 90% diffraction efficiency based on our dual-twist design at 633nm wavelength...N. & Escuti, M. J. Achromatic Wollaston prism beam splitter using polarization gratings. Opt. Lett. 41, 4461–4463 (2016). 13. Slussarenko, S., et...High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design Kun Gao1, Colin McGinty1, Harold Payson2, Shaun Berry2, Joseph
Ring magnet firing angle control
International Nuclear Information System (INIS)
Knott, M.J.; Lewis, L.G.; Rabe, H.H.
1975-01-01
A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle
B → Kπ decays and the weak phase angle γ
International Nuclear Information System (INIS)
Pham, T.N.
2001-01-01
The large branching ratios for B → Kπ decays as observed by the CLEO Collaboration indicate that penguin interactions contribute a major part to the decay rates and provide an interference between the Cabibbo-suppressed tree and penguin contributions resulting in a CP-asymmetry between the B → Kπ and its charge conjugate mode. The CP-averaged decay rates depend also on the weak phase γ and give us a determination of this phase. In this talk, I would like to report on a recent analysis of B → Kπ decays using factorisation model with final state interaction phase shift included. We find that factorisation seems to describe qualitatively the latest CLEO data. We also obtain a relation for the branching ratios independent of the strength of the strong penguin interactions. This relation gives a central value of 0.60 x 10 -5 for B(B-bar 0 → K-bar 0 π 0 ), somewhat smaller than the latest CLEO measurement. We also find that a ratio obtained from the CP-averaged B → Kπ decay rates could be used to test the factorisation model and to determine the weak angle γ with more precise data, though the latest CLEO data seem to favor γ in the range 90 deg. - 120 deg
Magnetic phase diagram of MnSi near critical temperature studied by neutron small angle scattering
International Nuclear Information System (INIS)
Ishikawa, Yoshikazu; Arai, Masatoshi
1984-01-01
The magnetic phase diagram of MnSi near the critical temperature T sub(N)=29.5K has been studied by neutron small angle scattering at KENS. It has been found that the anomalous new phase predicted by various methods to exist around at 28 K and 2 kOe is the paramagnetic phase where the magnetic correlations exhibit the same characteristics as those found at 29.5 K and zero magnetic field. This phenomenon, together with the sharp decrease of the magnetic phase boundary at T sub(N) and the substantial increase of the satellite Q vector at this temperature, has been found not to be interpreted by the current theories. (author)
Directory of Open Access Journals (Sweden)
J. Just
2017-12-01
Full Text Available The depth distribution of secondary phases in the solar cell absorber material Cu2ZnSnS4 (CZTS is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.
Gamma knife radiosurgery for cerebellopontine angle epidermoid tumors.
El-Shehaby, Amr M N; Reda, Wael A; Abdel Karim, Khaled M; Emad Eldin, Reem M; Nabeel, Ahmed M
2017-01-01
Intracranial epidermoid tumors are commonly found in the cerebellopontine angle where they usually present with either trigeminal neuralgia or hemifacial spasm. Radiosurgery for these tumors has rarely been reported. The purpose of this study is to assess the safety and clinical outcome of the treatment of cerebellopontine epidermoid tumors with gamma knife radiosurgery. This is a retrospective study involving 12 patients harboring cerebellopontine angle epidermoid tumors who underwent 15 sessions of gamma knife radiosurgery. Trigeminal pain was present in 8 patients and hemifacial spasm in 3 patients. All cases with trigeminal pain were receiving medication and still uncontrolled. One patient with hemifacial spasm was medically controlled before gamma knife and the other two were not. Two patients had undergone surgical resection prior to gamma knife treatment. The median prescription dose was 11 Gy (10-11 Gy). The tumor volumes ranged from 3.7 to 23.9 cc (median 10.5 cc). The median radiological follow up was 2 years (1-5 years). All tumors were controlled and one tumor shrank. The median clinical follow-up was 5 years. The trigeminal pain improved or disappeared in 5 patients, and of these, 4 cases stopped their medication and one decreased it. The hemifacial spasm resolved in 2 patients who were able to stop their medication. Facial palsy developed in 1 patient and improved with conservative treatment. Transient diplopia was also reported in 2 cases. Gamma knife radiosurgery provides good clinical control for cerebellopontine angle epidermoid tumors.
Sun, Ying
2012-08-03
This article proposes functional median polish, an extension of univariate median polish, for one-way and two-way functional analysis of variance (ANOVA). The functional median polish estimates the functional grand effect and functional main factor effects based on functional medians in an additive functional ANOVA model assuming no interaction among factors. A functional rank test is used to assess whether the functional main factor effects are significant. The robustness of the functional median polish is demonstrated by comparing its performance with the traditional functional ANOVA fitted by means under different outlier models in simulation studies. The functional median polish is illustrated on various applications in climate science, including one-way and two-way ANOVA when functional data are either curves or images. Specifically, Canadian temperature data, U. S. precipitation observations and outputs of global and regional climate models are considered, which can facilitate the research on the close link between local climate and the occurrence or severity of some diseases and other threats to human health. © 2012 International Biometric Society.
Influence of impedance phase angle on sound pressures and reverberation times in a rectangular room
DEFF Research Database (Denmark)
Jeong, Cheol-Ho; Lee, Doheon; Santurette, Sébastien
2014-01-01
, but with an absorptive ceiling are investigated. The zero phase angle, which has commonly been assumed in practice, is regarded as reference and differences in the sound pressure level and early decay time from the reference are quantified. As expected, larger differences in the room acoustic parameters are found...
Phase separation process in FeCr alloys studied by neutron small angle scattering
International Nuclear Information System (INIS)
Furusaka, Michihiro; Ishikawa, Yoshikazu; Yamaguchi, Sadae; Fujino, Yutaka.
1986-01-01
The very early stage as well as late stage of phase separation process in FeCr alloys (Fe-20, 30, 40, 60 at%Cr) have been studied by pulsed cold neutron small angle scattering instrument (SAN). At the early stage, scattering intensity I(q) obeys q -2 dependence at the high q side of the scattering function. The results are in accord with the theory of Langer et al. which takes into account nonlinear and thermal fluctuations effects. At the late stage where I(q) shows q -4 dependence, a dynamical scaling law holds, while it is not the case for the earlier stage. Phase diagram of FeCr system is also determined by critical scattering measurements. (author)
Federico, Fortunato; Benedetta, Demartini; Claudia, Maffoni; Emanuela, Apicella; Valentina, Leonardi; Leonardo, Mendolicchio
2017-06-01
The aim of our study was to investigate the relationship between nutritional status (body mass index and phase angle) and psychological symptoms at admission and discharge in a residential population of anorexic patients. We also aimed to determine the evolution of the above psychological symptoms and nutrition rehabilitation from admission to discharge. Thirty-six consecutive patients were included. The evaluation was performed using the following measures at admission and discharge: body mass index, phase angle, Eating Disorders Inventory-3, Multiphasic Personality Inventory-2 and Body Uneasiness. Admission and discharge nutritional status were not correlated with psychometric scores respectively at admission and at discharge. In addition, neither the improvement in the scores on the psychometric scales between admission and discharge was correlated to body mass index, phase angle improvement. For the group as a whole there were significant improvements from admission to discharge in nutritional status, Multiphasic Personality Inventory-2-Depression, Body Uneasiness-Global Score Index and in all the composites of Eating Disorders Inventory-3. Our data showed a disconnection between nutritional status and eating disorders psychopathology and/or psychiatric comorbidities. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Shaahid, S. M.; Basha, Mehaboob; Al-Hems, Luai M.
2018-03-01
Oil and water are often produced and transported together in pipelines that have various degrees of inclination from the horizontal. The flow of two immiscible liquids oil and water in pipes has been a research topic since several decades. In oil and chemical industries, knowledge of the frictional pressure loss in oil-water flows in pipes is necessary to specify the size of the pump required to pump the emulsions. An experimental investigation has been carried out for measurement of pressure drop of oil (D130)-water two-phase flows in 4 inch diameter inclined stainless steel pipe at different flow conditions. Experiments were conducted for different inclination angles including; 0°, 15°, 30° (for water cuts “WC” 0 - 100%). The flow rates at the inlet were varied from 4000 to 8000 barrels-per-day (BPD). For a given flow rate the frictional pressure drop has been found to increase (for all angles) from WC = 0 - 60%, and thereafter friction pressure drop decreases, this could be due phase inversion. For a given WC 40%, the frictional pressure drop has been found to increase with angle and flow rate. It has been noticed that inclination angle has appreciable effect on frictional pressure drop.
Apparent contact angle and contact angle hysteresis on liquid infused surfaces.
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
2016-12-21
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.
International Nuclear Information System (INIS)
Bates, F.S.; Koehler, W.C.; Wignall, G.D.; Fetters, L.J.
1986-12-01
A well characterized binary mixture of normal (protonated) and perdeuterated monodisperse 1,2 polybutenes has been studied by small-angle neutron scattering (SANS). For scattering wavevectors q greater than the inverse radius-of-gyration R/sub g/ -1 , the SANS intensity is quantitatively predicted by the random phase approximation (RPA) theory of deGennes over all measured values of the segment-segment interaction parameter Chi. In the region (Chi s-Chi)Chi s -1 > 0.5 the interaction parameter determined using the RPA theory for q > R/sub g/ -1 is greater than that calculated from the zero-angle intensity based on an Ornstein-Zernike plot, where Chi s represents the limit of single phase stability. These findings indicate a correlation between the critical fluctuation length ξ and R/sub g/ which is not accounted for by the RPA theory
Median Sternotomy or Right Thoracotomy Techniques for Total Artificial Heart Implantation in Calves.
Karimov, Jamshid H; Moazami, Nader; Sunagawa, Gengo; Kobayashi, Mariko; Byram, Nicole; Sale, Shiva; Such, Kimberly A; Horvath, David J; Golding, Leonard A R; Fukamachi, Kiyotaka
2016-10-01
The choice of optimal operative access technique for mechanical circulatory support device implantation ensures successful postoperative outcomes. In this study, we retrospectively evaluated the median sternotomy and lateral thoracotomy incisions for placement of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) in a bovine model. The CFTAH was implanted in 17 calves (Jersey calves; weight range, 77.0-93.9 kg) through a median sternotomy (n = 9) or right thoracotomy (n = 8) for elective chronic implantation periods of 14, 30, or 90 days. Similar preoperative preparation, surgical techniques, and postoperative care were employed. Implantation of the CFTAH was successfully performed in all cases. Both methods provided excellent surgical field visualization. After device connection, however, the median sternotomy approach provided better visualization of the anastomoses and surgical lines for hemostasis confirmation and repair due to easier device displacement, which is severely limited following right thoracotomy. All four animals sacrificed after completion of the planned durations (up to 90 days) were operated through full median sternotomy. Our data demonstrate that both approaches provide excellent initial field visualization. Full median sternotomy provides larger viewing angles at the anastomotic suture line after device connection to inflow and outflow ports. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Power Swing Detection in UPFC-Compensated Line by Phase Angle of Current
DEFF Research Database (Denmark)
Khodaparast, Jalal; Khederzadeh, M.; Silva, Filipe Miguel Faria da
2017-01-01
Power swing blocker (PSB) is a complementary part of distance relay protection, that detects power swing, in order to prevent unintended operation of a distance relay. Unified power flow controller (UPFC) is used in power system to control both active and reactive powers and its operation during...... condition. The results show that these indices may no longer work in systems with UPFC. In addition, this paper proposes a new method for detecting power swing based on the phase angle of current at relay point and compares it with two other methods. The new method distinguishes power swing from a fault...
Energy Technology Data Exchange (ETDEWEB)
Stelter, Lars, E-mail: lars.stelter@charite.de [Klinik fuer Radiologie, Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Grieser, Christian, E-mail: christian.grieser@charite.de [Klinik fuer Radiologie, Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Fernandes, Carmen Maria Perez, E-mail: carmen.perez-fernandez@charite.de [Klinik fuer Radiologie, Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Rothe, Jan Holger, E-mail: jan-holger.rothe@charite.de [Klinik fuer Radiologie, Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Streitparth, Florian, E-mail: florian.streitparth@charite.de [Klinik fuer Radiologie, Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Seehofer, Daniel, E-mail: daniel.seehofer@charite.de [Klinik fuer Allgemein-, Viszeral- und Transplantationschirurgie, Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); and others
2012-11-15
Objectives: To assess the improvement of bile duct visualization in Gd-EOB-DTPA enhanced MR-cholangiography (EOB-MRC) by using an increased flip angle. Methods: 35 patients underwent Gd-EOB-DTPA enhanced MRI of the liver including T2-weighted MRCP and hepatobiliary phase EOB-MRC using a flip angle of 10 Degree-Sign (FA10) and of 35 Degree-Sign (FA35), respectively. Images were evaluated regarding the delineation of biliary ducts, the order of branching and anatomic visualization of the biliary tree. ROI analysis was performed to estimate the signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Results: Applying the FA35 resulted in a significantly better SNR and CNR as compared to FA10. The overall image quality was rated as good for both, FA10 and FA35. The overall rating for regional delineation of the biliary system was rated significantly better for FA35 than for FA10 (p = 0.02). Classification of bile duct anatomy variations, however, was equivalent in both techniques. Conclusions: Increasing the flip angle of a T1-weighted 3D-sequence from 10 Degree-Sign to 35 Degree-Sign during the hepatobiliary phase of Gd-EOB enhanced MRI visually and quantitatively improved the visualization of the biliary ducts.
Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Zhang, Yanjun; Liu, Tao
2018-03-02
Shales have abundant micro-nano pores. Meanwhile, a considerable amount of fracturing liquid is imbibed spontaneously in the hydraulic fracturing process. The spontaneous imbibition in tortuous micro-nano pores is special to shale, and dynamic contact angle and slippage are two important characteristics. In this work, we mainly investigate spontaneous imbibition considering dynamic contact angle and slip effect in fractal tortuous capillaries. We introduce phase portrait analysis to analyse the dynamic state and stability of imbibition. Moreover, analytical solutions to the imbibition equation are derived under special situations, and the solutions are verified by published data. Finally, we discuss the influences of slip length, dynamic contact angle and gravity on spontaneous imbibition. The analysis shows that phase portrait is an ideal tool for analysing spontaneous imbibition because it can evaluate the process without solving the complex governing ordinary differential equations. Moreover, dynamic contact angle and slip effect play an important role in fluid imbibition in fractal tortuous capillaries. Neglecting slip effect in micro-nano pores apparently underestimates imbibition capability, and ignoring variations in contact angle causes inaccuracy in predicting imbibition speed at the initial stage of the process. Finally, gravity is one of the factors that control the stabilisation of the imbibition process.
Utility of Angle Correction for Hemodynamic Measurements with Doppler Echocardiography.
Sigurdsson, Martin I; Eoh, Eun J; Chow, Vinca W; Waldron, Nathan H; Cleve, Jayne; Nicoara, Alina; Swaminathan, Madhav
2018-04-06
The routine application angle correction (AnC) in hemodynamic measurements with transesophageal echocardiography currently is not recommended but potentially could be beneficial. The authors hypothesized that AnC can be applied reliably and may change grading of aortic stenosis (AS). Retrospective analysis. Single institution, university hospital. During phase I, use of AnC was assessed in 60 consecutive patients with intraoperative transesophageal echocardiography. During phase II, 129 images from a retrospective cohort of 117 cases were used to quantify AS by mean pressure gradient. A panel of observers used custom-written software in Java to measure intra-individual and inter-individual correlation in AnC application, correlation with preoperative transthoracic echocardiography gradients, and regrading of AS after AnC. For phase I, the median AnC was 21 (16-35) degrees, and 17% of patients required no AnC. For phase II, the median AnC was 7 (0-15) degrees, and 37% of assessed images required no AnC. The mean inter-individual and intra-individual correlation for AnC was 0.50 (95% confidence interval [CI] 0.49-0.52) and 0.87 (95% CI 0.82-0.92), respectively. AnC did not improve agreement with the transthoracic echocardiography mean pressure gradient. The mean inter-rater and intra-rater agreement for grading AS severity was 0.82 (95% CI 0.81-0.83) and 0.95 (95% CI 0.91-0.95), respectively. A total of 241 (7%) AS gradings were reclassified after AnC was applied, mostly when the uncorrected mean gradient was within 5 mmHg of the severity classification cutoff. AnC can be performed with a modest inter-rater and intra-rater correlation and high degree of inter-rater and intra-rater agreement for AS severity grading. Copyright © 2018 Elsevier Inc. All rights reserved.
Median Filtering Methods for Non-volcanic Tremor Detection
Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.
2016-12-01
Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.
Directory of Open Access Journals (Sweden)
Karin Sprenkelder
2014-12-01
Full Text Available Background: The angle of insonation can be an important determinant of Doppler-derived cardiac output measurements. It is known anatomically that there is a larger insonation angle for the left vs. right ventricular outflow area, but variability and calculated angles have not been described. The aim of this study was to describe the anatomical position of the left and right outflow areas and determine the geometric angle of insonation in newborn and infants. Methods: Magnetic resonance images of infants ≤ 2 years of age were explored. For each outflow, the position was determined relative to an anatomical reference point. To obtain the angle of insonation, the angle between the outflow and the hypothetical position of the ultrasound probe beam was calculated. Results: Forty-five patients were included with a median age of 71 days old. Anatomically, the left outflow is directed almost vertically upwards in sagittal images with a 40º angle to the right in coronal images. The right outflow is directed 53º upwards in sagittal images with a slight angle to the left on axial images. The median (range angle of insonation for the left ventricular outflow area using the apical or subcostal view was 40° (22-51 and 28° (7-47 respectively, and 23° (2-40 for the right ventricular outflow area using the parasternal view. Conclusions: The median geometric angle of insonation of the left outflow was larger than the right. The variation within the group was large, but in each individual case the angle for left was larger than for right.
Determination of the structural phase and octahedral rotation angle in halide perovskites
dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich
2018-02-01
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.
Watremez, L.; Chen, C.; Prada, M.; Minshull, T. A.; O'Reilly, B.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.
2015-12-01
The Porcupine Basin is a narrow V-shaped failed rifted basin located offshore SW Ireland. It is of Permo-Triassic to Cenozoic age, with the main rifting phase in the Late Jurassic to Early Cretaceous. Porcupine Basin is a key study area to learn about the processes of continental extension and to understand the thermal history of this rifted basin. Previous studies show increasing stretching factors, from less than 1.5 to the North to more than 6 to the South. A ridge feature, the Porcupine Median Ridge, has been identified in the middle of the southernmost part of the basin. During the last three decades, this ridge has been successively interpreted as a volcanic structure, a diapir of partially serpentinized mantle, or a block of continental crust. Its nature still remains debated today. In this study, we use arrival times from refractions and wide-angle reflections in the sedimentary, crustal and mantle layers to image the crustal structure of the thinnest part of the basin, the geometry of the continental thinning from margin to margin, and the Porcupine Median Ridge. The final velocity model is then compared with coincident seismic reflection data. We show that (1) the basin is asymmetric, (2) P-wave velocities in the uppermost mantle are lower than expected for unaltered peridotites, implying upper-mantle serpentinisation, (3) the nature of Porcupine Median Ridge is probably volcanic, and (4) the amount of thinning is greater than shown in previous studies. We discuss the thermal implications of these results for the evolution of this rift system and the processes leading to the formation of failed rifts. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.
Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice
2018-08-01
We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.
Fujiwara, Shin-Ichi
2009-09-01
Reconstruction of limb posture is a challenging task in assessing functional morphology and biomechanics of extinct tetrapods, mainly because of the wide range of motions possible at each limb joint and because of our poor knowledge of the relationship between posture and musculoskeletal structure, even in the extant taxa. This is especially true for extinct mammals such as the desmostylian taxa Desmostylus and Paleoparadoxia. This study presents a procedure that how the elbow joint angles of extinct quadruped mammals can be inferred from osteological characteristics. A survey of 67 dried skeletons and 113 step cycles of 32 extant genera, representing 25 families and 13 orders, showed that the olecranon of the ulna and the shaft of the humerus were oriented approximately perpendicular to each other during the stance phase. At this angle, the major extensor muscles maximize their torque at the elbow joint. Based on this survey, I suggest that olecranon orientation can be used for inferring the elbow joint angles of quadruped mammals with prominent olecranons, regardless of taxon, body size, and locomotor guild. By estimating the elbow joint angle, it is inferred that Desmostylus would have had more upright forelimbs than Paleoparadoxia, because their elbow joint angles during the stance phase were approximately 165 degrees and 130 degrees , respectively. Difference in elbow joint angles between these two genera suggests possible differences in stance and gait of these two mammals. Copyright 2009 Wiley-Liss, Inc.
Varan, Hacer Dogan; Bolayir, Basak; Kara, Ozgur; Arik, Gunes; Kizilarslanoglu, Muhammet Cemal; Kilic, Mustafa Kemal; Sumer, Fatih; Kuyumcu, Mehmet Emin; Yesil, Yusuf; Yavuz, Burcu Balam; Halil, Meltem; Cankurtaran, Mustafa
2016-12-01
Phase angle (PhA) value determined by bioelectrical impedance analysis (BIA) is an indicator of cell membrane damage and body cell mass. Recent studies have shown that low PhA value is associated with increased nutritional risk in various group of patients. However, there have been only a few studies performed globally assessing the relationship between nutritional risk and PhA in hospitalized geriatric patients. The aim of the study is to evaluate the predictive value of the PhA for malnutrition risk in hospitalized geriatric patients. One hundred and twenty-two hospitalized geriatric patients were included in this cross-sectional study. Comprehensive geriatric assessment tests and BIA measurements were performed within the first 48 h after admission. Nutritional risk state of the patients was determined with NRS-2002. Phase angle values of the patients with malnutrition risk were compared with the patients that did not have the same risk. The independent variables for predicting malnutrition risk were determined. SPSS version 15 was utilized for the statistical analyzes. The patients with malnutrition risk had significantly lower phase angle values than the patients without malnutrition risk (p = 0.003). ROC curve analysis suggested that the optimum PhA cut-off point for malnutrition risk was 4.7° with 79.6 % sensitivity, 64.6 % specificity, 73.9 % positive predictive value, and 73.9 % negative predictive value. BMI, prealbumin, PhA, and Mini Mental State Examination Test scores were the independent variables for predicting malnutrition risk. PhA can be a useful, independent indicator for predicting malnutrition risk in hospitalized geriatric patients.
Sosiaalisen median mahdollisuudet Tilastokeskukselle
Vesterinen, Anu
2011-01-01
Tämän opinnäytetyön aiheena oli sosiaalisen median mahdollisuudet Tilastokeskuksen viestinnässä. Työn tavoitteena oli kartoittaa sosiaalisen median käyttöön liittyviä mahdollisuuksia ja haasteita sekä selvittää siihen liittyviä odotuksia Tilastokeskuksen henkilöstön keskuudessa. Työn teoriaosuudessa tarkasteltiin sosiaalista mediaa käsitteenä ja esiteltiin sosiaalisen median käyttöä organisaation ulkoisen viestinnän välineenä. Opinnäytetyössä selvitettiin teoriatietoon pohjautuen sekä ca...
Nutritional evaluation in cirrhosis: Emphasis on the phase angle.
Fernandes, Sabrina Alves; de Mattos, Angelo Alves; Tovo, Cristiane Valle; Marroni, Claudio Augusto
2016-10-18
Protein-calorie malnutrition (PCM) is a common condition in cirrhotic patients, leading to a worse prognosis, complications, poor quality of life and lower survival rates. Among ways of assessing nutritional status, there are anthropometric methods such as the evaluation of the triceps skinfold, the arm circumference, the arm muscle circumference and the body mass index, and non-anthropometric methods such as the subjective global assessment, the handgrip strength of non-dominant hand, and the bioelectrical impedance analysis (BIA). PCM is frequently under-diagnosed in clinical settings in patients with cirrhosis due to the limitations of nutritional evaluation methods in this population. BIA is a useful method, but cannot be indicated in patients with abnormal body composition. In these situations, the phase angle (PA) has been used, and can become an important tool in assessing nutritional status in any situation. The PA is superior to anthropometric methods and might be considered as a nutritional indicator in cirrhosis. The early characterization of the nutritional status in patients with cirrhosis means an early nutritional intervention, with a positive impact on patients' overall prognosis. Among the usually accepted methods for nutritional diagnosis, the PA provides information in a quick and objective manner.
Sosiaalisen median markkinointistrategia
Tran, Jenny
2017-01-01
Insinöörityön tavoitteena oli suunnitella toimeksiantajayritykselle sopiva sosiaalisen median markkinointistrategia ja avustaa sen toteutuksessa sekä tuottaen sisältöä sovittuihin kanaviin. Pyrkimyksenä oli myös kouluttaa yrityksen henkilökuntaa käyttämään sosiaalista mediaa yleisellä tasolla ja markkinoinnissa tutustuttamalla heidät sosiaalisen median erilaisiin kanaviin ja mainostyökaluihin. Opinnäytetyössä keskityttiin tutkimaan Facebookissa toimivaa markkinointia ja siinä toimivia mai...
International Nuclear Information System (INIS)
Anderson, G.W.
1991-01-01
An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, left-angle φ right-angle T is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of left-angle φ right-angle T . In very minimal extensions of the standard model it is quite easy to increase left-angle φ right-angle T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value left-angle φ right-angle = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state left-angle φ right-angle = 246 GeV unstable. The requirement that the state left-angle φ right-angle = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field
Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements
Ming-Hung Chiu; Jia-Ze Shen; Jian-Ming Huang
2016-01-01
We proposed heterodyne angle deviation interferometry (HADI) for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR) prism) is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. ...
International Nuclear Information System (INIS)
Salter, M.; Sinha, N. R.; Szmigielski, W.
2011-01-01
Background: Carpal tunnel syndrome is a sporadically occurring abnormality due to compression of median nerve. It is exceedingly rare for it to be caused by thrombosis of persistent median artery. Case Report: A forty two year old female was referred for ultrasound examination due to ongoing wrist pain, not relived by pain killers and mild paraesthesia on the radial side of the hand. High resolution ultrasound and Doppler revealed a thrombosed persistent median artery and associated bifurcated median nerve. The thrombus resolved on treatment with anticoagulants. Conclusions: Ultrasound examination of the wrist when done for patients with carpal tunnel syndrome should preferably include looking for persistent median artery and its patency. (authors)
Russo, Brendan J; Savolainen, Peter T
2018-08-01
Median-crossover crashes are among the most hazardous events that can occur on freeways, often resulting in severe or fatal injuries. The primary countermeasure to reduce the occurrence of such crashes is the installation of a median barrier. When installation of a median barrier is warranted, transportation agencies are faced with the decision among various alternatives including concrete barriers, beam guardrail, or high-tension cable barriers. Each barrier type differs in terms of its deflection characteristics upon impact, the required installation and maintenance costs, and the roadway characteristics (e.g., median width) where installation would be feasible. This study involved an investigation of barrier performance through an in-depth analysis of crash frequency and severity data from freeway segments where high-tension cable, thrie-beam, and concrete median barriers were installed. A comprehensive manual review of crash reports was conducted to identify crashes in which a vehicle left the roadway and encroached into the median. This review also involved an examination of crash outcomes when a barrier strike occurred, which included vehicle containment, penetration, or re-direction onto the travel lanes. The manual review of crash reports provided critical supplementary information through narratives and diagrams not normally available through standard fields on police crash report forms. Statistical models were estimated to identify factors that affect the frequency, severity, and outcomes of median-related crashes, with particular emphases on differences between segments with varying median barrier types. Several roadway-, traffic-, and environmental-related characteristics were found to affect these metrics, with results varying across the different barrier types. The results of this study provide transportation agencies with important guidance as to the in-service performance of various types of median barrier. Copyright © 2018 Elsevier Ltd. All rights
Kinoform design with an optimal-rotation-angle method.
Bengtsson, J
1994-10-10
Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.
Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao
2015-09-01
Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the
International Nuclear Information System (INIS)
Goerigk, G.; Huber, K.; Mattern, N.; Williamson, D.L.
2012-01-01
In the last years Anomalous Small-Angle X-ray Scattering became a precise quantitative method resolving scattering contributions two or three orders of magnitude smaller compared to the overall small-angle scattering, which are related to the so-called pure-resonant scattering contribution. Additionally to the structural information precise quantitative information about the different constituents of multi-component systems like the fraction of a chemical component implemented into the materials nano-structures are obtained from these scattering contributions. The application of the Gauss elimination algorithm to the vector equation established by ASAXS measurements at three X-ray energies is demonstrated for three examples from chemistry and solid state physics. All examples deal with the quantitative analysis of the Resonant Invariant (RI-analysis). From the integrals of the pure-resonant scattering contribution the chemical concentrations in nano-scaled phases are determined. In one example the correlated analysis of the Resonant Invariant and the Non-resonant Invariant (NI-analysis) is employed. (authors)
Disequilibrium dihedral angles in layered intrusions: the microstructural record of fractionation
Holness, Marian; Namur, Olivier; Cawthorn, Grant
2013-04-01
The dihedral angle formed at junctions between two plagioclase grains and a grain of augite is only rarely in textural equilibrium in gabbros from km-scale crustal layered intrusions. The median of a population of these disequilibrium angles, Θcpp, varies systematically within individual layered intrusions, remaining constant over large stretches of stratigraphy with significant increases or decreases associated with the addition or reduction respectively of the number of phases on the liquidus of the bulk magma. The step-wise changes in Θcpp are present in Upper Zone of the Bushveld Complex, the Megacyclic Unit I of the Sept Iles Intrusion, and the Layered Series of the Skaergaard Intrusion. The plagioclase-bearing cumulates of Rum have a bimodal distribution of Θcpp, dependent on whether the cumulus assemblage includes clinopyroxene. The presence of the step-wise changes is independent of the order of arrival of cumulus phases and of the composition of either the cumulus phases or the interstitial liquid inferred to be present in the crystal mush. Step-wise changes in the rate of change in enthalpy with temperature (ΔH) of the cooling and crystallizing magma correspond to the observed variation of Θcpp, with increases of both ΔH and Θcpp associated with the addition of another liquidus phase, and decreases of both associated with the removal of a liquidus phase. The replacement of one phase by another (e.g. olivine ⇔ orthpyroxene) has little effect on ΔH and no discernible effect on Θcpp. An increase of ΔH is manifest by an increase in the fraction of the total enthalpy budget that is the latent heat of crystallization (the fractional latent heat). It also results in an increase in the amount crystallized in each incremental temperature drop (the crystal productivity). An increased fractional latent heat and crystal productivity result in an increased rate of plagioclase growth compared to that of augite during the final stages of solidification
Sosiaalisen median riskit yritysmaailmassa
Kilpinen, Joni
2015-01-01
Sosiaalisen median palveluista on kirjoitettu lukuisia kirjoja ja artikkeleita, joissa niitä ylistetään varsinkin yritysnäkökulmasta. Vaikka sosiaalinen media on muuttanut olennaisesti tapaa, jolla keskustella, mainostaa, etsiä ja jakaa tietoa, piilee sen palveluiden käytössä kuitenkin erilaisia uhkakuvia. Yritykset ja asiantuntijat pelkäävät sosiaalisen median avoimuuden aiheuttavan suuria tietoturvariskejä. Lisäksi asiantuntijat ovat varoitelleet sosiaalisessa mediassa olevista haittaohjelm...
GPU Accelerated Vector Median Filter
Aras, Rifat; Shen, Yuzhong
2011-01-01
Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .
Practical evaluation of action-angle variables
International Nuclear Information System (INIS)
Boozer, A.H.
1984-02-01
A practical method is described for establishing action-angle variables for a Hamiltonian system. That is, a given nearly integrable Hamiltonian is divided into an exactly integrable system plus a perturbation in action-angle form. The transformation of variables, which is carried out using a few short trajectory integrations, permits a rapid determination of trajectory properties throughout a phase space volume
Optimal fringe angle selection for digital fringe projection technique.
Wang, Yajun; Zhang, Song
2013-10-10
Existing digital fringe projection (DFP) systems mainly use either horizontal or vertical fringe patterns for three-dimensional shape measurement. This paper reveals that these two fringe directions are usually not optimal where the phase change is the largest to a given depth variation. We propose a novel and efficient method to determine the optimal fringe angle by projecting a set of horizontal and vertical fringe patterns onto a step-height object and by further analyzing two resultant phase maps. Experiments demonstrate the existence of the optimal angle and the success of the proposed optimal angle determination method.
Switching non-local median filter
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2015-06-01
This paper describes a novel image filtering method for removal of random-valued impulse noise superimposed on grayscale images. Generally, it is well known that switching-type median filters are effective for impulse noise removal. In this paper, we propose a more sophisticated switching-type impulse noise removal method in terms of detail-preserving performance. Specifically, the noise detector of the proposed method finds out noise-corrupted pixels by focusing attention on the difference between the value of a pixel of interest (POI) and the median of its neighboring pixel values, and on the POI's isolation tendency from the surrounding pixels. Furthermore, the removal of the detected noise is performed by the newly proposed median filter based on non-local processing, which has superior detail-preservation capability compared to the conventional median filter. The effectiveness and the validity of the proposed method are verified by some experiments using natural grayscale images.
Muzasti, R. A.; Lubis, H. R.
2018-03-01
Mortality and morbidity rate, especially from cardiovascular disease in hemodialysis patients in Indonesia is still quite high. One of indicator to assess the predictive value of mortality is the phase angle (PhA) of bioimpedance analysis (BIA) scan examination. Determining the comparison of BMI and laboratory data as cardiovascular risk factors in hemodialysis patients based on PhA.A cross-sectional analytical study was done on 155 outpatientsin RasyidaRenal Hospital, Medan in 2016. Patients were two groups, namely PhAcardiovascular risk factors of hemodialysis patients were determined by age, BMI, and hemoglobin.
Sun, Ying; Genton, Marc G.
2012-01-01
polish is demonstrated by comparing its performance with the traditional functional ANOVA fitted by means under different outlier models in simulation studies. The functional median polish is illustrated on various applications in climate science
Five Roots Pattern of Median Nerve Formation
Directory of Open Access Journals (Sweden)
Konstantinos Natsis
2016-04-01
Full Text Available An unusual combination of median nerve’s variations has been encountered in a male cadaver during routine educational dissection. In particular, the median nerve was formed by five roots; three roots originated from the lateral cord of the brachial plexus joined individually the median nerve’s medial root. The latter (fourth root was united with the lateral (fifth root of the median nerve forming the median nerve distally in the upper arm and not the axilla as usually. In addition, the median nerve was situated medial to the brachial artery. We review comprehensively the relevant variants, their embryologic development and their potential clinical applications.
Small-angle scattering studies of the fully hydrated phospholipid DPPC
Energy Technology Data Exchange (ETDEWEB)
Mason, P.C.; Gaulin, B.D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (CANADA); Epand, R.M. [Department of Biochemistry, McMaster University, Hamilton, Ontario, L8N 3Z5 (CANADA); Wignall, G.D.; Lin, J.S. [Center for Small-Angle Scattering Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
1999-01-01
Small-angle neutron and x-ray scattering studies have been carried out on fully hydrated dipalmitoylphosphatidylcholine (DPPC) multilamellar vesicles. This system is known to exhibit two distinct ripple (P{sub {beta}{sup {prime}}}) phases, which depend on sample history, at temperatures intermediate to its high-temperature liquid crystalline (L{sub {alpha}}), phase, and its low-temperature gel (L{sub {beta}{sup {prime}}}), phase. On cooling from the L{sub {alpha}} phase, the P{sub {beta}{sup {prime}}} phase displays a complex multipeak diffraction pattern that differs significantly from the diffraction pattern seen in the P{sub {beta}{sup {prime}}} phase obtained on warming from the L{sub {beta}{sup {prime}}} phase. Examining the P{sub {beta}{sup {prime}}} phase on cooling using small-angle neutron scattering and x-ray diffraction techniques leads to the conclusion that this phase is characterized by a long wavelength ripple ({lambda}{sub r}{approximately}330thinsp{Angstrom}) and a highly monoclinic unit cell ({gamma}{approximately}125{degree}). As the P{sub {beta}{sup {prime}}} phase is traversed in temperature, the ripple wavelength changes significantly while the monoclinicity remains unchanged. Ripples from the P{sub {beta}{sup {prime}}} phase are seen to persist into the L{sub {beta}{sup {prime}}} phase on cooling, leading to increased small-angle scattering characteristic of a disordered stacking of the lamellae. {copyright} {ital 1999} {ital The American Physical Society}
Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2018-05-01
In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).
Bieberle, M; Hampel, U
2015-06-13
Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Pilon, Dominic; Queener, Marykay; Lefebvre, Patrick; Ellis, Lorie A
2016-08-01
To calculate costs per median overall survival (OS) month in chemotherapy-naïve patients with metastatic castration-resistant prostate cancer (mCRPC) treated with abiraterone acetate plus prednisone (AA + P) or enzalutamide. Median treatment duration and median OS data from published Phase 3 clinical trials and prescribing information were used to calculate costs per median OS month based on wholesale acquisition costs (WACs) for patients with mCRPC treated with AA + P or enzalutamide. Sensitivity analyses were performed to understand how variations in treatment duration and treatment-related monitoring recommendations influenced cost per median OS month. Cost-effectiveness estimates of other Phase 3 trial outcomes were also explored: cost per month of chemotherapy avoided and per median radiographic progression-free survival (rPFS) month. The results demonstrated that AA + P has a lower cost per median OS month than enzalutamide ($3231 vs 4512; 28% reduction), based on the following assumptions: median treatment duration of 14 months for AA + P and 18 months for enzalutamide, median OS of 34.7 months for AA + P and 35.3 months for enzalutamide, and WAC per 30-day supply of $8007.17 for AA + P vs $8847.98 for enzalutamide. Sensitivity analyses showed that accounting for recommended treatment-related monitoring costs or assuming identical treatment durations for AA + P and enzalutamide (18 months) resulted in costs per median OS month 8-27% lower for AA + P than for enzalutamide. Costs per month of chemotherapy avoided were $4448 for AA + P and $5688 for enzalutamide, while costs per month to achieve median rPFS were $6794 for AA + P and $7963 for enzalutamide. This cost-effectiveness analysis demonstrated that costs per median OS month, along with costs of other Phase 3 trial outcomes, were lower for AA + P than for enzalutamide. The findings were robust to sensitivity analyses. These results have important implications
Impact of keyboard typing on the morphological changes of the median nerve.
Yeap Loh, Ping; Liang Yeoh, Wen; Nakashima, Hiroki; Muraki, Satoshi
2017-09-28
The primary objective was to investigate the effects of continuous typing on median nerve changes at the carpal tunnel region at two different keyboard slopes (0° and 20°). The secondary objective was to investigate the differences in wrist kinematics and the changes in wrist anthropometric measurements when typing at the two different keyboard slopes. Fifteen healthy right-handed young men were recruited. A randomized sequence of the conditions (control, typing I, and typing II) was assigned to each participant. Wrist anthropometric measurements, wrist kinematics data collection and ultrasound examination to the median nerve was performed at designated time block. Typing activity and time block do not cause significant changes to the wrist anthropometric measurements. The wrist measurements remained similar across all the time blocks in the three conditions. Subsequently, the wrist extensions and ulnar deviations were significantly higher in both the typing I and typing II conditions than in the control condition for both wrists (ptyping I and typing II conditions after the typing task than before the typing task. The MNCSA significantly decreased in the recovery phase after the typing task. This study demonstrated the immediate changes in the median nerve after continuous keyboard typing. Changes in the median nerve were greater during typing using a keyboard tilted at 20° than during typing using a keyboard tilted at 0°. The main findings suggest wrist posture near to neutral position caused lower changes of the median nerve.
International Nuclear Information System (INIS)
Dvinskij, S.V.; Chizhik, V.I.
2006-01-01
One analyzes cross polarization of nuclei within a rotating system of coordinates as applied to the NMR-experiments with a specimen rotation under the magic angle. One worded a concept of simultaneous phase and amplitude modulation according to which the Hamiltonian form of the restored dipole interaction persisted if inversion of difference of radiofrequency field amplitudes occurred simultaneously with phase inversion. One presents a theoretical substantiation in terms of the average Hamiltonian theory. The concept is demonstrated both experimentally and by means of numerical analysis for a number of special cases. Phase periodic inversion in cross polarized experiments is shown to result into practically important advantage of suppression of interactions of chemical shift and influence of effects of coarse adjustment of radiofrequency field parameters [ru
LONG-TERM MEASUREMENTS OF SUNSPOT MAGNETIC TILT ANGLES
Energy Technology Data Exchange (ETDEWEB)
Li Jing [Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States); Ulrich, Roger K., E-mail: jli@igpp.ucla.edu [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States)
2012-10-20
Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and SOHO/MDI magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of {approx}0.{sup 0}5 per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by {approx}0.{sup 0}9 per year on average, a trend that largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the Southern than in the Northern Hemisphere for all latitude zones, and the differences increase with increasing latitude.
Metasurface-based angle-selective multichannel acoustic refractor
Liu, Bingyi; Jiang, Yongyuan
2018-05-01
We theoretically study the angle-selective refractions of an impedance-matched acoustic gradient-index metasurface, which is integrated with a rigid bar array of a deep subwavelength period. An interesting refraction order appears under the all-angle incidence despite the existence of a critical angle, and notably, the odevity of the phase-discretization level apparently selects the transmitted diffraction orders. We utilize the strategy of multilayered media design to realize a three-channel acoustic refractor, which shows good promise for constructing multifunctional diffractive acoustic elements for acoustic communication.
A thermodynamic model of contact angle hysteresis.
Makkonen, Lasse
2017-08-14
When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.
Permasalahan P-Hub Median Dengan Lintasan Terpendek
Pasaribu, Raja David
2013-01-01
Hub are facilities that serve as sorting, switching, and transhipment in a transportation network. P-hub median problem is a discrete case location allocation problem which all hub is fully connected. In this paper will be intoduced Mixed Integrer Linear Programming (MILP) formulation models of cost for p-hub median problem allocation for uncapacitaced single allocation p-hub median(USApHMP). In this paper also introduced Floyd-Warshall shortest path algorithm to solve p-hub median problems a...
The Ultrasonographic Findings of Bifid Median Nerve
International Nuclear Information System (INIS)
Park, Hee Jin; Park, Noh Hyuck; Joh, Joon Hee; Lee, Sung Moon
2009-01-01
We wanted to evaluate the ultrasonographic findings of bifid median nerve and its clinical significance. We retrospectively reviewed five cases (three men and two women, mean age: 54 years) of incidentally found bifid median nerve from 264 cases of clinically suspected carpal-tunnel syndrome that were seen at our hospital during last 6 years. Doppler sonography was performed in all five cases and MR angiography was done in one case for detecting a persistent median artery. The difference (ΔCSA) between the sum of the cross-sectional areas of the bifid median nerve at the pisiform level (CSA2) and the cross-sectional area proximal to the bifurcation(CSA1) was calculated. The incidence of a bifid median nerve was 1.9%. All the patients presented with a tingling sensation on a hand and two patients had nocturnal pain. All the cases showed bifurcation of the nerve bundle proximal to the carpal tunnel. The margins appeared relatively smooth and each bundle showed a characteristic fascicular pattern. A persistent median artery was noted between the bundles in four cases. ΔCSA was more than 2 mm 2 in four cases. Bifid median nerve with a persistent median artery is a relatively rare normal variance and these are very important findings before performing surgical intervention to avoid potential nerve injury and massive bleeding. We highly suggest that radiologists should understand the anatomical characteristics of this anomaly and make efforts to detect it
Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces
Xu, Xianmin; Wang, Xiaoping
2011-01-01
Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.
Testing the gravity p-median model empirically
Directory of Open Access Journals (Sweden)
Kenneth Carling
2015-12-01
Full Text Available Regarding the location of a facility, the presumption in the widely used p-median model is that the customer opts for the shortest route to the nearest facility. However, this assumption is problematic on free markets since the customer is presumed to gravitate to a facility by the distance to and the attractiveness of it. The recently introduced gravity p-median model offers an extension to the p-median model that account for this. The model is therefore potentially interesting, although it has not yet been implemented and tested empirically. In this paper, we have implemented the model in an empirical problem of locating vehicle inspections, locksmiths, and retail stores of vehicle spare-parts for the purpose of investigating its superiority to the p-median model. We found, however, the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Switching non-local vector median filter
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2016-04-01
This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.
Yura, H T; Thrane, L; Andersen, P E
2000-12-01
Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.
Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel
2014-10-01
An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.
THE EFFECTS OF THREE DIFFERENT REAR KNEE ANGLES ON KINEMATICS IN THE SPRINT START
Directory of Open Access Journals (Sweden)
C. Milanese
2014-08-01
Full Text Available The purpose of this study was to investigate the rear knee angle range in the set position that allows sprinters to reach greater propulsion on the rear block during the sprint start. Eleven university-track team sprinters performed the sprint start using three rear knee angle conditions: 90°, 115° and 135°. A motion capture system consisting of 8 digital cameras (250 Hz was used to record kinematic parameters at the starting block phase and the acceleration phase. The following variables were considered: horizontal velocity of the centre of mass (COM, COM height, block time, pushing time on the rear block, percentage of pushing time on the rear block, force impulse, push-off angle and length of the first two strides. The main results show that first, horizontal block velocity is significantly greater at 90° vs 115° and 135° rear knee angle (p<0.05 and p<0.001 respectively at block clearance and the first two strides; second, during the pushing phase, the percentage of pushing time of the rear leg is significantly greater at 90° vs 135° rear knee angle (p<0.01. No significant difference was found for block time among the conditions. These results indicate that block velocity is the main kinematic parameter affected by rear knee angle during the starting block phase and acceleration phase. Furthermore, the 90° rear knee angle allows for a better push-off of the rear leg than larger angles at the set position. The findings of this study provide some direction and useful practical advice in defining an efficient rear leg biomechanical configuration at the set position.
International Nuclear Information System (INIS)
Tokue, Hiroyuki; Tokue, Azusa; Tsushima, Yoshito
2012-01-01
We performed this study in order to investigate the shape of the origin of the celiac artery in maximum intensity projection (MIP) using routine 64 multidetector-row computed tomography (MDCT) data in order to plan for the implantation of an intra-arterial hepatic port system. A total of 1,104 patients with hepatocellular carcinoma were assessed with MDCT. In the definition of the branching angle, the anterior side of the abdominal aorta was considered the baseline, and the cranial and caudal sides were designated as 0 and 180 degrees, respectively. The angles between 0 and 90 degrees and between 90 and 180 degrees from the cranial side were considered upward and downward, respectively, and the branching angle of the celiac artery was classified every 30 degrees. The subclavian arterial route was used for the implantation of an intra-arterial hepatic port system in patients with branching angles of 150 degrees or more (sharp downward). The median branching angle was (median ± standard deviation) 135 ± 23 (range, 51–174) degrees. The branching was upward in 77 patients (7%) and downward in 1,027 patients (93%). The branching was downward with an angle of 120 to150 degrees in most patients (n = 613). The branching was sharply downward with an angle of 150 degrees or more in 177 patients (16%). A total of 10 patients were referred for interventional placement of an intra-arterial hepatic port system. The subclavian arterial route was used for implantation of an intra-arterial hepatic port system in 2 patients with sharp downward branching. The branching angle of the celiac artery can be easily determined by the preparation of MIP images from routine MDCT data. MIP may provide useful information for the selection of the catheter insertion route in order to avoid a sharp branching angle of the celiac artery
A controllable viewing angle LCD with an optically isotropic liquid crystal
International Nuclear Information System (INIS)
Kim, Min Su; Lim, Young Jin; Yoon, Sukin; Kang, Shin-Woong; Lee, Seung Hee; Kim, Miyoung; Wu, Shin-Tson
2010-01-01
An optically isotropic liquid crystal (LC) such as a blue phase LC or an optically isotropic nano-structured LC exhibits a very wide viewing angle because the induced birefringence is along the in-plane electric field. Utilizing such a material, we propose a liquid crystal display (LCD) whose viewing angle can be switched from wide view to narrow view using only one panel. In the device, each pixel is divided into two parts: a major pixel and a sub-pixel. The main pixels display the images while the sub-pixels control the viewing angle. In the main pixels, birefringence is induced by horizontal electric fields through inter-digital electrodes leading to a wide viewing angle, while in the sub-pixels, birefringence is induced by the vertical electric field so that phase retardation occurs only at oblique angles. As a result, the dark state (or contrast ratio) of the entire pixel can be controlled by the voltage of the sub-pixels. Such a switchable viewing angle LCD is attractive for protecting personal privacy.
Schwarz, Jakob; Kirchengast, Gottfried; Schwaerz, Marc
2018-05-01
Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere - such as pressure, temperature, and tropospheric water vapor profiles (involving background information) - can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP); Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC); and Meteorological Operational Satellite A (MetOp). The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together
Median Nerve Conduction in Healthy Nigerians: Normative Data
African Journals Online (AJOL)
of median nerve disease using multiple studies, and rendering ... Aim: To develop normative values for motor and sensory median nerve ..... Table 5: Comparison of median motor nerve conduction study parameters to studies elsewhere. Study.
International Nuclear Information System (INIS)
Tulloch, A.J.; Kimbrough, D.L.; Landis, C.A.; Mortimer, N.; Johnston, M.R.
1999-01-01
U-Pb zircon ages of 237-180 Ma and c. 280 Ma of seven granitoid clasts from the Rainy River Conglomerate which lies within the eastern Median Tectonic Zone (Median Batholith) in Nelson, and the Barretts Formation of the Brook Street Terrane in Southland, constrain the depositional ages of both units to be no older than c. 180-200 Ma (Early Jurassic). The minimum age of the Rainy River Conglomerate is constrained by the 147 +2 -1 Ma (Latest Jurassic) emplacement age of the One Mile Gabbronorite (new name: previously western Buller Diorite). The ages and chemistry of five of the granitoid clasts are broadly compatible with derivation from rocks that are now represented by Triassic plutons of the Median Tectonic Zone (Median Batholith), although ages as young as 180 Ma are slightly outside the range of the latter as currently exposed in New Zealand. The age (273-290 Ma, 237 +/- 3 Ma) and chemistry of the other two clasts (one each from Rainy River Conglomerate and Barretts Formation) suggest derivation from the Brook Street Terrane. Similarity in stratigraphic age, depositional characteristics, granitoid clast ages and composition between Rainy River Conglomerate and Barretts Formation suggests that they are broadly correlative and collectively overlapped a combined Brook Street Terrane - Median Batholith (MTZ) before the Late Jurassic (147 +2 -1 Ma). Sedimentary overlap may also have continued across to Middle Jurassic conglomeratic strata in the Murihiku Terrane to the east of the Brook Street Terrane. A U-Pb zircon age of 261 +/- 2 Ma is reported for Pourakino Trondhjemite of the Brook Street Terrane. (author). 56 refs., 10 figs., 4 tabs
Median and ulnar neuropathies in university guitarists.
Kennedy, Rachel H; Hutcherson, Kimberly J; Kain, Jennifer B; Phillips, Alicia L; Halle, John S; Greathouse, David G
2006-02-01
Descriptive study. To determine the presence of median and ulnar neuropathies in both upper extremities of university guitarists. Peripheral nerve entrapment syndromes of the upper extremities are well documented in musicians. Guitarists and plucked-string musicians are at risk for entrapment neuropathies in the upper extremities and are prone to mild neurologic deficits. Twenty-four volunteer male and female guitarists (age range, 18-26 years) were recruited from the Belmont University School of Music and the Vanderbilt University Blair School of Music. Individuals were excluded if they were pregnant or had a history of recent upper extremity or neck injury. Subjects completed a history form, were interviewed, and underwent a physical examination. Nerve conduction status of the median and ulnar nerves of both upper extremities was obtained by performing motor, sensory, and F-wave (central) nerve conduction studies. Descriptive statistics of the nerve conduction study variables were computed using Microsoft Excel. Six subjects had positive findings on provocative testing of the median and ulnar nerves. Otherwise, these guitarists had normal upper extremity neural and musculoskeletal function based on the history and physical examinations. When comparing the subjects' nerve conduction study values with a chart of normal nerve conduction studies values, 2 subjects had prolonged distal motor latencies (DMLs) of the left median nerve of 4.3 and 4.7 milliseconds (normal, DMLs are compatible with median neuropathy at or distal to the wrist. Otherwise, all electrophysiological variables were within normal limits for motor, sensory, and F-wave (central) values. However, comparison studies of median and ulnar motor latencies in the same hand demonstrated prolonged differences of greater than 1.0 milliseconds that affected the median nerve in 2 additional subjects, and identified contralateral limb involvement in a subject with a prolonged distal latency. The other 20
The development of mathematics courseware for learning line and angle
Halim, Noor Dayana Abd; Han, Ong Boon; Abdullah, Zaleha; Yusup, Junaidah
2015-05-01
Learning software is a teaching aid which is often used in schools to increase students' motivation, attract students' attention and also improve the quality of teaching and learning process. However, the development of learning software should be followed the phases in Instructional Design (ID) Model, therefore the process can be carried out systematic and orderly. Thus, this concept paper describes the application of ADDIE model in the development of mathematics learning courseware for learning Line and Angle named CBL-Math. ADDIE model consists of five consecutive phases which are Analysis, Design, Development, Implementation and Evaluation. Each phase must be properly planned in order to achieve the objectives stated. Other than to describe the processes occurring in each phase, this paper also demonstrating how cognitive theory of multimedia learning principles are integrated in the developed courseware. The principles that applied in the courseware reduce the students' cognitive load while learning the topic of line and angle. With well prepared development process and the integration of appropriate principles, it is expected that the developed software can help students learn effectively and also increase students' achievement in the topic of Line and Angle.
Complications and Reoperations in Mandibular Angle Fractures.
Chen, Collin L; Zenga, Joseph; Patel, Ruchin; Branham, Gregory
2018-05-01
Mandible angle fractures can be repaired in a variety of ways, with no consensus on the outcomes of complications and reoperation rates. To analyze patient, injury, and surgical factors, including approach to the angle and plating technique, associated with postoperative complications, as well as the rate of reoperation with regard to mandible angle fractures. Retrospective cohort study analyzing the surgical outcomes of patients with mandible angle fractures between January 1, 2000, and December 31, 2015, who underwent open reduction and internal fixation. Patients were eligible if they were aged 18 years or older, had 3 or less mandible fractures with 1 involving the mandibular angle, and had adequate follow-up data. Patients with comminuted angle fractures, bilateral angle fractures, and multiple surgical approaches were excluded. A total of 135 patients were included in the study. All procedures were conducted at a single, large academic hospital located in an urban setting. Major complications and reoperation rates. Major complications included in this study were nonunion, malunion, severe malocclusion, severe infection, and exposed hardware. Of 135 patients 113 (83.7%) were men; median age was 29 years (range, 18-82 years). Eighty-seven patients (64.4%) underwent the transcervical approach and 48 patients (35.6%) received the transoral approach. Fifteen (17.2%) patients in the transcervical group and 9 (18.8%) patients in the transoral group experienced major complications (difference, 1%; 95% CI, -8% to 10%). Thirteen (14.9%) patients in the transcervical group and 8 (16.7%) patients in the transoral group underwent reoperations (difference, 2%; 95% CI, -13% to 17%). Active smoking had a significant effect on the rate of major complications (odds ratio, 4.04; 95% CI, 1.07 to 15.34; P = .04). During repair of noncomminuted mandibular angle fractures, both of the commonly used approaches-transcervical and transoral-can be used during treatment with equal
Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia.
Basile, Claudia; Della-Morte, David; Cacciatore, Francesco; Gargiulo, Gaetano; Galizia, Gianluigi; Roselli, Mario; Curcio, Francesco; Bonaduce, Domenico; Abete, Pasquale
2014-10-01
Several markers have been associated with sarcopenia in the elderly, including bioelectrical indices. Phase angle (PhA) is an impedance parameter and it has been suggested as an indicator of cellular death. Thus, the relationship between PhA and muscle mass and strength was investigated in 207 consecutively elderly participants (mean age 76.2±6.7years) admitted for multidimensional geriatric evaluation. Muscle strength by grip strength using a hand-held dynamometer and muscle mass was measured by bioimpedentiometer. PhA was calculated directly with its arctangent (resistance/reactance×180°/π). Linear relationship among muscular mass and strength and with clinical and biochemical parameters, including PhA at uni- and multivariate analysis were performed. Linear regression analysis demonstrated that lower level of PhA is associated with reduction in grip strength (y=3.16+0.08x; r=0.49; pelderly subjects and it may be considered a good bioelectrical marker to identify elderly patients at risk of sarcopenia. Copyright © 2014 Elsevier Inc. All rights reserved.
Comparison of Cole-Cole and Constant Phase Angle modeling in time-domain induced polarization
DEFF Research Database (Denmark)
Lajaunie, Myriam; Maurya, Pradip Kumar; Fiandaca, Gianluca
The Cole-Cole model and the constant phase angle (CPA) model are two prevailing phenomenological descriptions of the induced polarization (IP), used for both frequency domain (FD) and time domain (TD) modeling. The former one is a 4-parameter description, while the latest one involves only two......, forward modeling of quadrupolar sequences on 1D and 2D heterogeneous CPA models shows that the CPA decays differ among each other only by a multiplication factor. Consequently, the inspection of field data in log-log plots gives insight on the modeling needed for fitting them: the CPA inversion cannot...... is reflected in TDIP data, and therefore, at identifying (1) if and when it is possible to distinguish, in time domain, between a Cole-Cole description and a CPA one, and (2) if features of time domain data exist in order to know, from a simple data inspection, which model will be the most adapted to the data...
Body composition and phase angle in Russian children in remission from acute lymphoblastic leukemia
Tseytlin, G. Ja; Khomyakova, I. A.; Nikolaev, D. V.; Konovalova, M. V.; Vashura, A. Yu; Tretyak, A. V.; Godina, E. Z.; Rudnev, S. G.
2010-04-01
Elevated degree of body fatness and changes in other body composition parameters are known to be common effects of treatment for acute lymphoblastic leukemia (ALL) in children. In order to study peculiarities of somatic growth and development in ALL survivors, we describe the results of BIA body composition analysis of 112 boys and 108 girls aged 5-18 years in remission from ALL (remission time range 1-13 years) compared to data from the same number of age- and sex-matched healthy controls (n=220). Detrimental effect on height in ALL boys was observed, whereas girls experienced additional weight gain compared to healthy subjects. In ALL patients, resistance, body fat, and percent body fat were significantly increased. The reactance, phase angle, absolute and relative values of skeletal muscle and body cell mass were significantly decreased. Principal component analysis revealed an early prevalence of adiposity traits in the somatic growth and development of ALL girls compared to healthy controls.
Experimental investigations of turbulent temperature fluctuations and phase angles in ASDEX Upgrade
Freethy, Simon
2017-10-01
A complete experimental understanding of the turbulent fluctuations in tokamak plasmas is essential for providing confidence in the extrapolation of heat transport models to future experimental devices and reactors. Guided by ``predict first'' nonlinear gyrokinetic simulations with the GENE code, two new turbulence diagnostics were designed and have been installed on ASDEX Upgrade (AUG) to probe the fundamentals of ion-scale turbulent electron heat transport. The first, a 30-channel correlation ECE (CECE) radiometer, measures radial profiles (0.5 a levels are in the range 0.3 - 0.8%. The second is formed by the addition of a reflectometer on the same line of sight to enable measurements of the phase angle between turbulent density and temperature fluctuations. Design predictions are followed by a more traditional ``post-diction'' validation study with GENE. Using a cutting edge synthetic diagnostic GENE shows a factor 1.6 - 2 over-prediction of the fluctuation amplitude, while matching both ion and electron heat fluxes within experimental error. Detailed sensitivity scans are underway to understand the robustness of this disagreement and a detailed assessment of the experimental errors has been carried out. The discrepancy opens questions about the role of multi-scale turbulence physics, but also indicates the need for the comparison of more experimental turbulence properties to have a more complete validation hierarchy. In an effort to understand the discrepancy, predictions of the nT-phase and the radial correlation length have been made along with an assessment of their sensitivity to experimental errors. Comparison to experimental measurements will be discussed. This work is supported in part by the US DOE under Grants DE-SC0006419 and DE-SC0017381. This work has also received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement number 633053.
Retroreflective Phase Retardation Prisms.
1981-06-01
resonant cavity of a 1.064 Mm laser. This report shows that it is possible to coat the reflecting surfaces of a porro prism so that incident plane...with controlled phase retardation can be made by coating each reflecting surface of a porro prism with a single dielectric film. The amount of phase...of angle of incidence (n, < n2) S. Phase change on reflection as a function of angle of incidence (n" n ) [RL-0202-’R 6. Porro prism 7. Phase change
Directory of Open Access Journals (Sweden)
2016-09-01
Full Text Available Objective: The purpose of this study was to compare the two models of marker placement for identifying of rear foot angle in normal people with and without shoes during the different stage of stance phase of walking. Methods: Fifteen male students in Birjand University were selected based on Navicular Drop Index. After marker placement based on Clarke and Nigg models, the rear foot angle were recorded with two-dimensional analysis (Panasonic Camera from behind position while subjects walked with 1.7 m/s on a treadmill with and without shoes. For statistical analysis, independent samples t-test was used (p≤0.05. Results: The Results showed a significant difference in rear foot angle during the stance phase between the two models of Clarke and Nigg during walking with and without shoes (p≤0.001. Conclusion: Based on the results of the present study, due to their specific features care must be considered when using any of these two models to investigate the angular kinematics of the foot.
Directory of Open Access Journals (Sweden)
Tokue Hiroyuki
2012-12-01
Full Text Available Abstract Background We performed this study in order to investigate the shape of the origin of the celiac artery in maximum intensity projection (MIP using routine 64 multidetector-row computed tomography (MDCT data in order to plan for the implantation of an intra-arterial hepatic port system. Methods A total of 1,104 patients with hepatocellular carcinoma were assessed with MDCT. In the definition of the branching angle, the anterior side of the abdominal aorta was considered the baseline, and the cranial and caudal sides were designated as 0 and 180 degrees, respectively. The angles between 0 and 90 degrees and between 90 and 180 degrees from the cranial side were considered upward and downward, respectively, and the branching angle of the celiac artery was classified every 30 degrees. The subclavian arterial route was used for the implantation of an intra-arterial hepatic port system in patients with branching angles of 150 degrees or more (sharp downward. Results The median branching angle was (median ± standard deviation 135 ± 23 (range, 51–174 degrees. The branching was upward in 77 patients (7% and downward in 1,027 patients (93%. The branching was downward with an angle of 120 to150 degrees in most patients (n = 613. The branching was sharply downward with an angle of 150 degrees or more in 177 patients (16%. A total of 10 patients were referred for interventional placement of an intra-arterial hepatic port system. The subclavian arterial route was used for implantation of an intra-arterial hepatic port system in 2 patients with sharp downward branching. Conclusions The branching angle of the celiac artery can be easily determined by the preparation of MIP images from routine MDCT data. MIP may provide useful information for the selection of the catheter insertion route in order to avoid a sharp branching angle of the celiac artery.
The contact angle of wetting of the solid phase of soil before and after chemical modification
Directory of Open Access Journals (Sweden)
Tyugai Zemfira
2015-07-01
Full Text Available Wettability of soil affects a wide variety of processes including infiltration, preferential flow and surface runoff. Wettability of surface is usually expressed in terms of contact angle (CA measurement. If the CA between liquid and solid surface is less than 90°, the surface is called hydrophilic, otherwise the surface is called hydrophobic. If the CA of water droplet on hydrophilic surface is in a range of 0-30° this surface is called superhydrophilic. In case of superhydrophobic surfaces the CA exceeds 150° that means that these surfaces are extremely difficult to wet. CA of wetting of mineral soil particles depends on the overlying organic and iron compounds. The object of study is a sample of the humus-accumulative horizon of typical chernozem (Kursk, Russia and two samples (horizons A1, B2 of red ferrallitic soils (Fr. Norfolk, NE Oceania. The soil samples were analyzed for organic carbon, forms of non-silicate iron and hydrophobic-hydrophilic composition of humic substances. CA of wetting was determined in the intact samples and after removal of organic matter (H2O2 treatment, amorphous and crystallized forms of iron. Static contact angles were determined with the sessile drop method using a digital goniometer (Drop Shape Analysis System, DSA100, Krüss GmbH, Hamburg, Germany. The contact angle was calculated by the Young–Laplace method (fitting of Young–Laplace equation to the drop shape. The measurements were repeated 10-15 times for every sample. Oxidation of organic matter (H2O2 treatment causes an increase in the values of CA of wetting (in chernozem from 9.3 to 28,0-29.5º, in ferrallitic soil from 18.0 − 27.3 to 22.4 − 33.4º. CA remained constant for chernozem and slightly decreased in the case of ferrallitic soil, when the removal of amorphous and crystallized forms of iron was performed on samples pretreated with H2O2. CA increase occurs after successive removal of nonsilicate forms of iron from soil samples of
MEDIAN: Wireless broadband LAN for multimedia applications
Vliet, P.J. van
1998-01-01
MEDIAN is one of the projects in the mobile domain of the Advanced Communications Technologies and Services (ACTS) programme of the European Commission. The main obiective of the MEDIAN project is to evaluate and implement a high speed Wireless Customer Premises / Local Area Network (WCPN/WLAN)
On Preliminary Test Estimator for Median
Okazaki, Takeo; 岡崎, 威生
1990-01-01
The purpose of the present paper is to discuss about estimation of median with a preliminary test. Two procedures are presented, one uses Median test and the other uses Wilcoxon two-sample test for the preliminary test. Sections 3 and 4 give mathematical formulations of such properties, including mean square errors with one specified case. Section 5 discusses their optimal significance levels of the preliminary test and proposes their numerical values by Monte Carlo method. In addition to mea...
Phase and vacancy behaviour of hard "slanted" cubes
van Damme, R.; van der Meer, B.; van den Broeke, J. J.; Smallenburg, F.; Filion, L.
2017-09-01
We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the "slant" angle). More specifically, using a combination of event-driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we determine and characterize the equilibrium phases formed by these particles for various slant angles and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase is extremely high and depends only on the packing fraction and not the particle shape. At higher densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of this system by drawing a phase diagram in the slant angle-packing fraction plane.
Directory of Open Access Journals (Sweden)
J. Schwarz
2018-05-01
Full Text Available Global Navigation Satellite System (GNSS radio occultation (RO observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere – such as pressure, temperature, and tropospheric water vapor profiles (involving background information – can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP; Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC; and Meteorological Operational Satellite A (MetOp. The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs
Long range correlations and folding angle with applications to Î±-helical proteins
Krokhotin, Andrey; Nicolis, Stam; Niemi, Antti J.
2014-03-01
The conformational complexity of chain-like macromolecules such as proteins and other linear polymers is much larger than that of point-like atoms and molecules. Unlike particles, chains can bend, twist, and even become knotted. Thus chains might also display a much richer phase structure. Unfortunately, it is not very easy to characterize the phase of a long chain. Essentially, the only known attribute is the radius of gyration. The way how it changes when the degree of polymerization becomes different, and how it evolves when the ambient temperature and solvent properties change, is commonly used to disclose the phase. But in any finite length chain there are corrections to scaling that complicate the detailed analysis of the phase structure. Here we introduce a quantity that we call the folding angle to identify and scrutinize the phase structure, as a complement to the radius of gyration. We argue for a mean-field level relationship between the folding angle and the scaling exponent in the radius of gyration. We then estimate the value of the folding angle in the case of crystallographic α-helical protein structures in the Protein Data Bank. We also show how the experimental value of the folding angle can be obtained computationally, using a semiclassical Born-Oppenheimer description of α-helical chiral chains.
Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong
2017-11-01
Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.
Energy Technology Data Exchange (ETDEWEB)
Stelter, Lars, E-mail: lars.stelter@charite.de [Klinik für Radiologie, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Freyhardt, Patrick, E-mail: patrick.freyhardt@charite.de [Klinik für Radiologie, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Grieser, Christian, E-mail: christian.grieser@charite.de [Klinik für Radiologie, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Walter, Thula, E-mail: thula.walter@charite.de [Klinik für Radiologie, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Geisel, Dominik, E-mail: dominik.geisel@charite.de [Klinik für Radiologie, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Baur, Alexander, E-mail: alexander.baur@charite.de [Klinik für Radiologie, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); and others
2014-10-15
Highlights: • EOB-MRC acquired with a flip angle of 35° revealed a better diagnostic performance compared to T2w-MRCP. • EOB-MRC increased the readers’ confidence in identifying anatomic variations of the biliary tree. • As EOB-MRC comprises functional information it is a valuable adjunct to T2w-MRCP. - Abstract: Objectives: To estimate the additional value of an increased flip angle of 35° in late phase Gd-EOB-DTPA-enhanced magnetic resonance cholangiography, as compared to T2w-MRCP. Methods: 40 adult patients underwent Gd-EOB-DTPA enhanced MRI of the liver including a T2-weighted 3D TSE MRCP (T2w-MRCP) as well as a late phase T1-weighted THRIVE sequences applying a flip angle of 35° (fa35). Two experienced observers evaluated the images regarding the delineation of the different biliary regions using a three-point grading system. A five-point scale was applied to determine the readers’ confidence in identifying anatomical variations of the biliary tree. ROI analysis was performed to compare the signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Results: The quality for visualizing the biliary tree differed between T2w-MRCP and fa35 (p = <0.001). Late phase EOB-MRC was rated as good for delineating the entire biliary system, whereas T2w-MRCP received an overall poor rating. Especially the depiction of the intrahepatic bile ducts was estimated as problematic in T2w-MRCP. T2w-MRCP and fa35 revealed a discordant assessment of anatomical variations in 12.5% of the cases, comprising a generally higher confidence level for fa35 (4.0 ± 1.1 vs. 2.2 ± 1.2, p = <0.001). SNR proofed to be significantly higher in fa35 (p = <0.001), whereas T2w-MRCP revealed a significantly higher CNR (<0.001). Conclusions: Gd-EOB-DTPA enhanced magnetic resonance cholangiography acquired with a flip angle of 35° revealed a better diagnostic performance compared to T2w-MRCP and might be a valuable adjunct in assessing functional bile duct abnormalities.
Scanziani, Alessio; Singh, Kamaljit; Blunt, Martin J; Guadagnini, Alberto
2017-06-15
Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Yu Ruhong
1993-01-01
For the reactor coolant system of the second phase project of Qinshan NPP, the layout scheme with two loops and an angle of 60 degree is adopted. In this scheme, two loops are connected to reactor pressure vessel (RPV), and the angle included between the inlet and outlet nozzles of the RPV is 60 degree in a same loop. The issues involved in the analysis of mechanical behaviour of piping system to demonstrate the validity of such a scheme are described briefly in the paper, including the modelling technique adopted in establishing mathematical model, the methods used for structural analysis of piping system, stress and fatigue analysis in piping fittings. A brief description of the calculation results are given and the feasibility and rationality are discussed
Dual pathology proximal median nerve compression of the forearm.
LENUS (Irish Health Repository)
Murphy, Siun M
2013-12-01
We report an unusual case of synchronous pathology in the forearm- the coexistence of a large lipoma of the median nerve together with an osteochondroma of the proximal ulna, giving rise to a dual proximal median nerve compression. Proximal median nerve compression neuropathies in the forearm are uncommon compared to the prevalence of distal compression neuropathies (eg Carpal Tunnel Syndrome). Both neural fibrolipomas (Refs. 1,2) and osteochondromas of the proximal ulna (Ref. 3) in isolation are rare but well documented. Unlike that of a distal compression, a proximal compression of the median nerve will often have a definite cause. Neural fibrolipoma, also called fibrolipomatous hamartoma are rare, slow-growing, benign tumours of peripheral nerves, most often occurring in the median nerve of younger patients. To our knowledge, this is the first report of such dual pathology in the same forearm, giving rise to a severe proximal compression of the median nerve. In this case, the nerve was being pushed anteriorly by the osteochondroma, and was being compressed from within by the intraneural lipoma. This unusual case highlights the advantage of preoperative imaging as part of the workup of proximal median nerve compression.
Efficient Scalable Median Filtering Using Histogram-Based Operations.
Green, Oded
2018-05-01
Median filtering is a smoothing technique for noise removal in images. While there are various implementations of median filtering for a single-core CPU, there are few implementations for accelerators and multi-core systems. Many parallel implementations of median filtering use a sorting algorithm for rearranging the values within a filtering window and taking the median of the sorted value. While using sorting algorithms allows for simple parallel implementations, the cost of the sorting becomes prohibitive as the filtering windows grow. This makes such algorithms, sequential and parallel alike, inefficient. In this work, we introduce the first software parallel median filtering that is non-sorting-based. The new algorithm uses efficient histogram-based operations. These reduce the computational requirements of the new algorithm while also accessing the image fewer times. We show an implementation of our algorithm for both the CPU and NVIDIA's CUDA supported graphics processing unit (GPU). The new algorithm is compared with several other leading CPU and GPU implementations. The CPU implementation has near perfect linear scaling with a speedup on a quad-core system. The GPU implementation is several orders of magnitude faster than the other GPU implementations for mid-size median filters. For small kernels, and , comparison-based approaches are preferable as fewer operations are required. Lastly, the new algorithm is open-source and can be found in the OpenCV library.
Phase Angle Control of Three Level Inverter Based D-STATCOM Using Neuro-Fuzzy Controller
Directory of Open Access Journals (Sweden)
COTELI, R.
2012-02-01
Full Text Available Distribution Static Compensator (D-STATCOM is a shunt compensation device used to improve electric power quality in distribution systems. It is well-known that D-STATCOM is a nonlinear, semi-defined and time-varying system. Therefore, control of D-STATCOM by the conventional control techniques is very difficult task. In this paper, the control of D-STATCOM is carried out by the neuro-fuzzy controller (NFC which has non-linear and robust structure. For this aim, an experimental setup based on three-level H-bridge inverter is constructed. Phase angle control method is used for control of D-STATCOM's output reactive power. Control algorithm for this experimental setup is prepared in MATLAB/Simulink and downloaded to DS1103 controller card. A Mamdani type NFC is designed for control of D-STATCOM's reactive current. Output of NFC is integrated to increase tracking performance of controller in steady state. The performance of D-STATCOM is experimentally evaluated by changing reference reactive current as on-line. The experimental results show that the proposed controller gives very satisfactory performance under different loading conditions.
Portfolio optimization using median-variance approach
Wan Mohd, Wan Rosanisah; Mohamad, Daud; Mohamed, Zulkifli
2013-04-01
Optimization models have been applied in many decision-making problems particularly in portfolio selection. Since the introduction of Markowitz's theory of portfolio selection, various approaches based on mathematical programming have been introduced such as mean-variance, mean-absolute deviation, mean-variance-skewness and conditional value-at-risk (CVaR) mainly to maximize return and minimize risk. However most of the approaches assume that the distribution of data is normal and this is not generally true. As an alternative, in this paper, we employ the median-variance approach to improve the portfolio optimization. This approach has successfully catered both types of normal and non-normal distribution of data. With this actual representation, we analyze and compare the rate of return and risk between the mean-variance and the median-variance based portfolio which consist of 30 stocks from Bursa Malaysia. The results in this study show that the median-variance approach is capable to produce a lower risk for each return earning as compared to the mean-variance approach.
Small-angle light scattering studies of dense AOT-water-decane microemulsions
International Nuclear Information System (INIS)
Micali, N.; Trusso, S.; Mallamace, F.; Chen, S.H.
1996-01-01
It is performed extensive studies of a three-component microemulsion system composed of AOT-water-decane using small-angle light scattering (SALS). The small-angle scattering intensities are measured in the angular interval 0.001-0.1 radians, corresponding to a Bragg wave number range of 0.14 μm -1 -1 . The measurements were made by changing temperature and volume fraction φ of the dispersed phase in the range 0.65< φ < 0.75. All samples have a fixed water-to-AOT molar ratio, w [water[/[AOT[ = 40.8, in order to keep the same average droplet size in the stable one-phase region. With the SALS technique it is observed all the phase boundaries of a very complex phase diagram with a percolation line and many structural organizations within it. It is observed at the percolation transition threshold, a scaling behavior of the intensity data. In addition it is described in detail a structural transition from a droplet microemulsion to a bi continuous one a suggested by a recent small-angle neutron scattering experiment. From the data analysis it is show that both the percolation phenomenon and this novel structural transition are described from a large-scale aggregation between microemulsion droplets
Lee, Pei-Jung; Liu, Catherine Jui-Ling; Wojciechowski, Robert; Bailey-Wilson, Joan E; Cheng, Ching-Yu
2010-05-01
To assess the correlations between retinal nerve fiber layer (RNFL) thickness measured with scanning laser polarimetry and visual field (VF) sensitivity in primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). Prospective, comparative, observational cases series. Fifty patients with POAG and 56 patients with PACG were examined using scanning laser polarimetry with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, Inc.) and Humphrey VF analyzer (Carl Zeiss Meditec, Inc.) between August 2005 and July 2006 at Taipei Veterans General Hospital. Correlations between RNFL thickness and VF sensitivity, expressed as mean sensitivity in both decibel and 1/Lambert scales, were estimated by the Spearman rank correlation coefficient (r(s)) and multivariate median regression models (pseudo R(2)). The correlations were determined globally and for 6 RNFL sectors and their corresponding VF regions. The correlation between RNFL thickness and mean sensitivity (in decibels) was weaker in the PACG group (r(s) = 0.38; P = .004; pseudo R(2) = 0.17) than in the POAG group (r(s) = 0.51; P polarimetry. Compared with eyes with POAG, fewer RNFL sectors have significant structure-function correlations in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.
Papillary carcinoma in median aberrant thyroid (ectopic) - case report.
Hebbar K, Ashwin; K, Shashidhar; Deshmane, Vijaya Laxmi; Kumar, Veerendra; Arjunan, Ravi
2014-06-01
Median ectopic thyroid may be encountered anywhere from the foramen caecum to the diaphragm. Non lingual median aberrant thyroid (incomplete descent) usually found in the infrahyoid region and malignant transformation in this ectopic thyroid tissue is very rare. We report an extremely rare case of papillary carcinoma in non lingual median aberrant thyroid in a 25-year-old female. The differentiation between a carcinoma arising in the median ectopic thyroid tissue and a metastatic papillary carcinoma from an occult primary in the main thyroid gland is also discussed.
Robust median estimator in logisitc regression
Czech Academy of Sciences Publication Activity Database
Hobza, T.; Pardo, L.; Vajda, Igor
2008-01-01
Roč. 138, č. 12 (2008), s. 3822-3840 ISSN 0378-3758 R&D Projects: GA MŠk 1M0572 Grant - others:Instituto Nacional de Estadistica (ES) MPO FI - IM3/136; GA MŠk(CZ) MTM 2006-06872 Institutional research plan: CEZ:AV0Z10750506 Keywords : Logistic regression * Median * Robustness * Consistency and asymptotic normality * Morgenthaler * Bianco and Yohai * Croux and Hasellbroeck Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.679, year: 2008 http://library.utia.cas.cz/separaty/2008/SI/vajda-robust%20median%20estimator%20in%20logistic%20regression.pdf
Dual pathology proximal median nerve compression of the forearm.
Murphy, Siun M; Browne, Katherine; Tuite, David J; O'Shaughnessy, Michael
2013-12-01
We report an unusual case of synchronous pathology in the forearm- the coexistence of a large lipoma of the median nerve together with an osteochondroma of the proximal ulna, giving rise to a dual proximal median nerve compression. Proximal median nerve compression neuropathies in the forearm are uncommon compared to the prevalence of distal compression neuropathies (eg Carpal Tunnel Syndrome). Both neural fibrolipomas (Refs. 1,2) and osteochondromas of the proximal ulna (Ref. 3) in isolation are rare but well documented. Unlike that of a distal compression, a proximal compression of the median nerve will often have a definite cause. Neural fibrolipoma, also called fibrolipomatous hamartoma are rare, slow-growing, benign tumours of peripheral nerves, most often occurring in the median nerve of younger patients. To our knowledge, this is the first report of such dual pathology in the same forearm, giving rise to a severe proximal compression of the median nerve. In this case, the nerve was being pushed anteriorly by the osteochondroma, and was being compressed from within by the intraneural lipoma. This unusual case highlights the advantage of preoperative imaging as part of the workup of proximal median nerve compression. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Widening of the femoral proximal diaphysis--metaphysis angle in fetuses with achondroplasia.
Khalil, A; Morales-Roselló, J; Morlando, M; Bhide, A; Papageorghiou, A; Thilaganathan, B
2014-07-01
It has recently been reported that fetuses with achondroplasia have a wider than expected femoral proximal diaphysis-metaphysis angle (femoral angle). The aim of this case-control study was to investigate this finding. Cases with confirmed achondroplasia (n = 6), small-for-gestational-age fetuses (n = 70) and a group of normal fetuses (n = 377) were included in this study. The ultrasound image of the femur was examined by two independent experienced observers blinded to the diagnosis, who measured the femoral angle. These values were converted into multiples of the expected median (MoM), after adjustment for gestational age and femur length. Prevalence of various prenatal ultrasound signs of achondroplasia was determined in affected fetuses. Intra- and interobserver agreement of measurement of femoral angle was assessed using 95% limits of agreement and kappa statistics. The femoral angle can be measured accurately by ultrasound, and increases with both increasing gestational age and increasing femur length. The femoral angle-MoM was significantly higher in fetuses with achondroplasia than in the control group (1.36 vs 1.00 MoM, P achondroplasia (83.3%), which was the most consistent finding other than shortening of the long bones. The femoral angle is wider in fetuses with achondroplasia. This new ultrasound sign appears promising as an additional discriminatory marker when clinicians are faced with a case of short long bones in the third trimester. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.
Three-Phase and Six-Phase AC at the Lab Bench
Caplan, George M.
2009-01-01
Utility companies generate three-phase electric power, which consists of three sinusoidal voltages with phase angles of 0 degrees, 120 degrees, and 240 degrees. The ac generators described in most introductory textbooks are single-phase generators, so physics students are not likely to learn about three-phase power. I have developed a simple way…
Median nail dystrophy involving the thumb nail
Directory of Open Access Journals (Sweden)
Rahulkrishna Kota
2016-01-01
Full Text Available Median canaliform dystrophy of Heller is a rare entity characterized by a midline or a paramedian ridge or split and canal formation in nail plate of one or both the thumb nails. It is an acquired condition resulting from a temporary defect in the matrix that interferes with nail formation. Habitual picking of the nail base may be responsible for some cases. Histopathology classically shows parakeratosis, accumulation of melanin within and between the nail bed keratinocytes. Treatment of median nail dystrophy includes injectable triamcinalone acetonide, topical 0.1% tacrolimus, and tazarotene 0.05%, which is many a times challenging for a dermatologist. Psychiatric opinion should be taken when associated with the depressive, obsessive-compulsive, or impulse-control disorder. We report a case of 19-year-old male diagnosed as median nail dystrophy.
Large window median filtering on Clip7
Energy Technology Data Exchange (ETDEWEB)
Mathews, K N
1983-07-01
Median filtering has been found to be a useful operation to perform on images in order to reduce random noise while preserving edges of objects. However, in some cases, as the resolution of the image increases, so too does the required window size of the filter. For parallel array processors, this leads to problems when dealing with the large amount of data involved. That is to say that there tend to be problems over slow access of data from pixels over a large neighbourhood, lack of available storage of this data during the operation and long computational times for finding the median. An algorithm for finding the median, designed for use on byte wide architecture parallel array processors is presented together with its implementation on Clip7, a scanning array of such processors. 6 references.
Directory of Open Access Journals (Sweden)
M. E. Gorbunov
2018-01-01
Full Text Available A new reference occultation processing system (rOPS will include a Global Navigation Satellite System (GNSS radio occultation (RO retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA retrieval in the lower troposphere and introduce (1 an empirically estimated boundary layer bias (BLB model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2 the estimation of (residual systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors, where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The
Gorbunov, Michael E.; Kirchengast, Gottfried
2018-01-01
A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA) retrieval in the lower troposphere and introduce (1) an empirically estimated boundary layer bias (BLB) model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2) the estimation of (residual) systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors), where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT) amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The systematic and
Design considerations for a backlight with switchable viewing angles
Fujieda, Ichiro; Takagi, Yoshihiko; Rahadian, Fanny
2006-08-01
Small-sized liquid crystal displays are widely used for mobile applications such as cell phones. Electronic control of a viewing angle range is desired in order to maintain privacy for viewing in public as well as to provide wide viewing angles for solitary viewing. Conventionally, a polymer-dispersed liquid crystal (PDLC) panel is inserted between a backlight and a liquid crystal panel. The PDLC layer either transmits or scatters the light from the backlight, thus providing an electronic control of viewing angles. However, such a display system is obviously thick and expensive. Here, we propose to place an electronically-controlled, light-deflecting device between an LED and a light-guide of a backlight. For example, a liquid crystal lens is investigated for other applications and its focal length is controlled electronically. A liquid crystal phase grating either transmits or diffracts an incoming light depending on whether or not a periodic phase distribution is formed inside its liquid crystal layer. A bias applied to such a device will control the angular distribution of the light propagating inside a light-guide. Output couplers built in the light-guide extract the propagating light to outside. They can be V-shaped grooves, pyramids, or any other structures that can refract, reflect or diffract light. When any of such interactions occur, the output couplers translate the changes in the propagation angles into the angular distribution of the output light. Hence the viewing-angle characteristic can be switched. The designs of the output couplers and the LC devices are important for such a backlight system.
2017-08-08
previously published linear -to-circular polarizers. This is because the first sheet has a low inductance in the -direction, which acts as a wire-grid...GHZ Active Phased Array for Wide Angle Scanning Carl R. Pfeiffer Defense Engineering Corporation Boris Tomasic Multispectral Sensing and...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62204F/61102F 6. AUTHOR(S) Carl R. Pfeiffer (Defense Engineering Corporation) Boris Tomasic (AFRL
Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.
Promraksa, Arwut; Chen, Li-Jen
2012-10-15
A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Improving Zernike moments comparison for optimal similarity and rotation angle retrieval.
Revaud, Jérôme; Lavoué, Guillaume; Baskurt, Atilla
2009-04-01
Zernike moments constitute a powerful shape descriptor in terms of robustness and description capability. However the classical way of comparing two Zernike descriptors only takes into account the magnitude of the moments and loses the phase information. The novelty of our approach is to take advantage of the phase information in the comparison process while still preserving the invariance to rotation. This new Zernike comparator provides a more accurate similarity measure together with the optimal rotation angle between the patterns, while keeping the same complexity as the classical approach. This angle information is particularly of interest for many applications, including 3D scene understanding through images. Experiments demonstrate that our comparator outperforms the classical one in terms of similarity measure. In particular the robustness of the retrieval against noise and geometric deformation is greatly improved. Moreover, the rotation angle estimation is also more accurate than state-of-the-art algorithms.
Sosiaalisen median markkinoinnin vuosikello Weecos Oy:lle
Heinämäki, Lotta; Huuskonen, Leena
2015-01-01
Opinnäytetyön tarkoitus oli luoda kokonaisvaltainen ja selkeä suunnitelma Weecos Oy:n markkinointitoimenpiteille valituissa sosiaalisen median kanavissa. Weecos on vuonna 2012 perustettu ekologisia yrityksiä yhteen keräävä verkkokauppa-alusta. Pienestä koostaan johtuen se ei ole pystynyt toteuttamaan sosiaalisen median markkinointia toivomallaan tavalla ja markkinoinnin suunnittelu ja toteutus on ollut epäsäännöllistä. Markkinointisuunnitelman tavoitteena oli helpottaa yrityksen markkinoi...
Contact angle and local wetting at contact line.
Li, Ri; Shan, Yanguang
2012-11-06
This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.
Incidence angle normalization of radar backscatter data
NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...
Directory of Open Access Journals (Sweden)
Diptasree Maitra Ghosh
Full Text Available This study has described and experimentally validated the differential electrodes surface electromyography (sEMG model for tibialis anterior muscles during isometric contraction. This model has investigated the effect of pennation angle on the simulated sEMG signal. The results show that there is no significant effect of pennation angle in the range 0° to 20° to the single fibre action potential shape recorded on the skin surface. However, the changes with respect to pennation angle are observed in sEMG amplitude, frequency and fractal dimension. It is also observed that at different levels of muscle contractions there is similarity in the relationships with Root Mean Square, Median Frequency, and Fractal Dimension of the recorded and simulated sEMG signals.
Studies in small angle scattering techniques
International Nuclear Information System (INIS)
Moellenbach, K.
1980-03-01
Small angle scattering of neutrons, X-rays and γ-rays are found among the spectroscopic methods developed in the recent years. Although these techniques differ from each other in many respects, e.g. radiation sources and technical equipment needed, their power to resolve physical phenomena and areas of application can be discussed in a general scheme. Selected examples are given illustrating the use of specific technical methods. Jahn-Teller driven structural phase transitions in Rare Earth zircons were studied with neutron scattering as well as small angle γ-ray diffraction. The study of neutron scattering from formations of magnetic domains in the Ising ferromagnet LiTbF 4 is a second example. Both these examples represent more than experimental test cases since the theoretical interpretations of the data obtained are discussed as well. As a last example the use of small angle scattering methods for the study of molecular biological samples is discussed. In particular the experimental procedures used in connection with scattering from aqueous solutions of proteins and protein complexes are given. (Auth.)
Measurement of the CKM angle $\\gamma$ at LHCb
Gersabeck, M
2009-01-01
The precise measurement of the CKM unitarity triangle angle $\\gamma$ is a key goal of the LHCb physics programme. The uncertainty on $\\gamma$, the currently least-well known of the three angles, will be reduced dramatically. Complementary measurements will be made in tree-level processes, and modes where loop diagrams play an important role. The tree-level measurements will cover time-integrated as well as time- dependent measurements in both the $B^0_d$ and the $B^0_s$ sectors. The ensemble of these measurements will provide a powerful test of whether new physics phases contribute to heavy-flavour transitions.
Equilibrium contact angle or the most-stable contact angle?
Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A
2014-04-01
It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.
Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays.
Yifat, Yuval; Eitan, Michal; Iluz, Zeev; Hanein, Yael; Boag, Amir; Scheuer, Jacob
2014-05-14
We demonstrate wide-angle, broadband, and efficient reflection holography by utilizing coupled dipole-patch nanoantenna cells to impose an arbitrary phase profile on the reflected light. High-fidelity images were projected at angles of 45 and 20° with respect to the impinging light with efficiencies ranging between 40-50% over an optical bandwidth exceeding 180 nm. Excellent agreement with the theoretical predictions was found at a wide spectral range. The demonstration of such reflectarrays opens new avenues toward expanding the limits of large-angle holography.
Exchange interpretation of anomalous back angle heavy ion elastic scattering
International Nuclear Information System (INIS)
Zisman, M.S.
1977-10-01
Anomalous back angle oscillations in the angular distributions obtained in the elastic scattering of 16 O + 28 Si and 12 C + 28 Si have been interpreted in terms of an elastic cluster transfer comparable to that observed in other heavy ion reactions. The calculations appear to at least qualitatively explain the data with respect to the existence and phase of the back angle oscillations. The results indicate that an exchange mechanism may play an important role in the oscillations
Interference-induced angle-independent acoustical transparency
International Nuclear Information System (INIS)
Qi, Lehua; Yu, Gaokun; Wang, Ning; Wang, Xinlong; Wang, Guibo
2014-01-01
It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtz resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves
Directory of Open Access Journals (Sweden)
Ronny Amaya
Full Text Available Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS and solid circumferential stress (CS. Due to variations in impedance (global factors and geometric complexities (local factors in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA. Asynchronous flows (SPA close to -180° that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous
Jiang, Yuzhen; Chang, Dolly S; Zhu, Haogang; Khawaja, Anthony P; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M; He, Mingguang; Friedman, David S; Foster, Paul J
2014-09-01
To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Longitudinal cohort study. Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8-1.6) in treated eyes and 1.6°/year (95% CI, 1.3-2.0) in untreated eyes (P<0.001). Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the same time period. Copyright © 2014 American Academy of Ophthalmology. Published by
The influence of flip angle on the magic angle effect
International Nuclear Information System (INIS)
Zurlo, J.V.; Blacksin, M.F.; Karimi, S.
2000-01-01
Objective. To assess the impact of flip angle with gradient sequences on the ''magic angle effect''. We characterized the magic angle effect in various gradient echo sequences and compared the signal- to-noise ratios present on these sequences with the signal-to-noise ratios of spin echo sequences.Design. Ten normal healthy volunteers were positioned such that the flexor hallucis longus tendon remained at approximately at 55 to the main magnetic field (the magic angle). The tendon was imaged by a conventional spin echo T1- and T2-weighted techniques and by a series of gradient techniques. Gradient sequences were altered by both TE and flip angle. Signal-to-noise measurements were obtained at segments of the flexor hallucis longus tendon demonstrating the magic angle effect to quantify the artifact. Signal-to-noise measurements were compared and statistical analysis performed. Similar measurements were taken of the anterior tibialis tendon as an internal control.Results and conclusions. We demonstrated the magic angle effect on all the gradient sequences. The intensity of the artifact was affected by both the TE and flip angle. Low TE values and a high flip angle demonstrated the greatest magic angle effect. At TE values less than 30 ms, a high flip angle will markedly increase the magic angle effect. (orig.)
Angle-selective all-dielectric Huygens’ metasurfaces
Arslan, D.; Chong, K. E.; Miroshnichenko, A. E.; Choi, D.-Y.; Neshev, D. N.; Pertsch, T.; Kivshar, Y. S.; Staude, I.
2017-11-01
We experimentally and numerically study the angularly resolved transmission properties of dielectric metasurfaces consisting of silicon nanodisks which support electric and magnetic dipolar Mie-type resonances in the near-infrared spectral range. First, we concentrate on Huygens’ metasurfaces which are characterised by a spectral overlap of the fundamental electric and magnetic dipole resonances of the silicon nanodisks at normal incidence. Huygens’ metasurfaces exhibit a high transmitted intensity over the spectral width of the resonances due to impedance matching, while the transmitted phase shows a variation of 2π as the wavelength is swept across the width of the resonances. We observe that the transmittance of the Huygens’ metasurfaces depends on the incidence angle and is sensitive to polarisation for non-normal incidence. As the incidence angle is increased starting from normal incidence, the two dipole resonances are shifted out of the spectral overlap and the resonant features appear as pronounced transmittance minima. Next, we consider a metasurface with an increased nanodisk radius as compared to the Huygens’ metasurface, which supports spectrally separate electric and magnetic dipole resonances at normal incidence. We show that for TM polarisation, we can shift the resonances of this metasurface into spectral overlap and regain the high resonant transmittance characteristic of Huygens’ metasurfaces at a particular incidence angle. Furthermore, both metasurfaces are demonstrated to reject all TM polarised light incident under angles other than the design overlap angle at their respective operation frequency. Our experimental observations are in good qualitative agreement with numerical calculations.
DEFF Research Database (Denmark)
Brecht, E.; Schmahl, W.W.; Fuess, H.
1997-01-01
The reordering mechanism from the antiferromagnetic phase AFI to the antiferromagnetic phase AFII in an oxygen-deficient YBa2Cu2.94Al0.06O6+delta single crystal with an oxygen content delta=0.18 in the Cu(1) layer has been studied by neutron diffraction and nuclear quadrupole resonance (NQR......). The crystal orders magnetically from the paramagnetic state to the antiferromagnetic AFI state at the Neel temperature T-N=403 K with an empirical critical exponent of beta = 0.26. Reordering to the antiferromagnetic AFII state sets in at T-2 = 12 K. In both the AFI and AFII phases the ordered magnetic...... as a function of temperature. This result indicates unequivocally that the AFIAFII reordering takes place via a noncollinear intermediate turn angle phase AFI+II....
Directory of Open Access Journals (Sweden)
Flávia Artese
2009-06-01
Full Text Available A má oclusão Classe II de Angle é caracterizada por uma discrepância dentária anteroposterior, que geralmente está acompanhada por alterações esqueléticas. O tratamento ortodôntico precoce permite a correção da discrepância esquelética por controle de crescimento (primeira fase, o que favorece a correção do posicionamento dentário, mais tardiamente (segunda fase. Este relato descreve o tratamento de um caso de má oclusão Classe II, divisão 2, de Angle, em duas fases, e foi apresentado à Diretoria do Board Brasileiro de Ortodontia e Ortopedia Facial (BBO, como parte dos requisitos para a obtenção do título de Diplomado pelo BBO. O caso foi avaliado como representante da Categoria 1, ou seja, má oclusão Classe II de Angle tratada sem extrações dentárias e com controle de crescimento.Angle Class II malocclusion is characterized by an anteroposterior dental discrepancy which is generally accompanied by skeletal disharmonies. Early orthodontic treatment allows the correction of skeletal discrepancies using growth control (first phase which favors later correction of tooth positioning (second phase. This case report describes an Angle Class II, division 2, malocclusion treated in two phases and was presented to the Brazilian Board of Orthodontics and Facial Orthopedics (BBO as part of the requirements for BBO certification. It was evaluated as a Category 1 case, i.e., Class II malocclusion treated without extractions, with growth control.
The Dual-Angle Method for Fast, Sensitive T1 Measurement in Vivo with Low-Angle Adiabatic Pulses
Bottomley, P. A.; Ouwerkerk, R.
A new method for measuring T1 based on a measurement of the ratio, R, of the steady-state partially saturated NMR signals acquired at two fixed low flip angles (hip-angle and excitation-field ( B1) inhomogeneity result in roughly proportionate errors in the apparent T1. The method is best implemented with adiabatic low-angle pulses such as B1-independent rotation (BIR-4) or BIR-4 phase-cycled (BIRP) pulses, which permit measurements with surface coils. Experimental validation was obtained at 2 T by comparison of unlocalized inversion-recovery and dual-angle proton ( 1H) and phosphorus ( 31P) measurements from vials containing doped water with 0.04 ≤ T1 ≤ 2.8 s and from the metabolites in the calf muscles of eight human volunteers. Calf muscle values of 6 ± 0.5 s for phosphocreatine and around 3.7 ± 0.8 s for the adenosine triphosphates (ATP) were in good agreement with inversion-recovery T1 values and values from the literature. Use of the dual-angle method accelerated T1 measurement time by about fivefold over inversion recovery. The dual-angle method was implemented in a one-dimensional localized surface-coil 31P spectroscopy sequence, producing consistent T1 measurements from phantoms, the calf muscle, and the human liver. 31P T1 values of ATP in the livers of six volunteers were about 0.5 ± 0.1 to 0.6 ± 0.2 s: the total exam times were about 35 minutes per subject. The method is ideally suited to low-sensitivity and/or low-concentration moieties, such as in 31P NMR in vivo, where study-time limitations are critical, and for rapid 1H T1 imaging.
Safety performance evaluation of cable median barriers on freeways in Florida.
Alluri, Priyanka; Haleem, Kirolos; Gan, Albert; Mauthner, John
2016-07-03
This article aims to evaluate the safety performance of cable median barriers on freeways in Florida. The safety performance evaluation was based on the percentages of barrier and median crossovers by vehicle type, crash severity, and cable median barrier type (Trinity Cable Safety System [CASS] and Gibraltar system). Twenty-three locations with cable median barriers totaling about 101 miles were identified. Police reports of 6,524 crashes from years 2005-2010 at these locations were reviewed to verify and obtain detailed crash information. A total of 549 crashes were determined to be barrier related (i.e., crashes involving vehicles hitting the cable median barrier) and were reviewed in further detail to identify crossover crashes and the manner in which the vehicles crossed the barriers; that is, by either overriding, underriding, or penetrating the barriers. Overall, 2.6% of vehicles that hit the cable median barrier crossed the median and traversed into the opposite travel lane. Overall, 98.1% of cars and 95.5% of light trucks that hit the barrier were prevented from crossing the median. In other words, 1.9% of cars and 4.5% of light trucks that hit the barrier had crossed the median and encroached on the opposite travel lanes. There is no significant difference in the performance of cable median barrier for cars versus light trucks in terms of crossover crashes. In terms of severity, overrides were more severe compared to underrides and penetrations. The statistics showed that the CASS and Gibraltar systems performed similarly in terms of crossover crashes. However, the Gibraltar system experienced a higher proportion of penetrations compared to the CASS system. The CASS system resulted in a slightly higher percentage of moderate and minor injury crashes compared to the Gibraltar system. Cable median barriers are successful in preventing median crossover crashes; 97.4% of the cable median barrier crashes were prevented from crossing over the median. Of all of
Performance evaluation of cable median barrier systems in Texas.
2009-08-01
Since 2003, the Texas Department of Transportation (TxDOT) has embarked on an aggressive campaign to install : median barriers to prevent cross-median crashes on freeway facilities statewide. In the few years prior to 2003, : virtually all fatalities...
International Nuclear Information System (INIS)
Das, D.; Majumder, T.P.; Ghosh, N.K.
2014-01-01
The in-phase and anti-phase motions of antiferroelectric liquid crystals were changed due to the influence of charge density associated with the layer modulation modifying the elastic behaviour. The elastic constant was changed because of the coupling between charge density variation and variation of azimuthal angle (ϕ). We obtained theoretically a modified elastic constant depending on the variation of charge density in both in-phase and anti-phase motions. The theoretically elastic constant decreases with the increase of the coupling coefficient between charge density and in-phase azimuthal angle (ϕ a ). We theoretically accounted the dependence of dielectric strength for both relaxations depending on the effective elastic constant influenced by the presence of charge density and discussed the results with experimental observations
Methods for magnetic resonance analysis using magic angle technique
Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA
2011-11-22
Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.
A LEGO Mindstorms Brewster angle microscope
Fernsler, Jonathan; Nguyen, Vincent; Wallum, Alison; Benz, Nicholas; Hamlin, Matthew; Pilgram, Jessica; Vanderpoel, Hunter; Lau, Ryan
2017-09-01
A Brewster Angle Microscope (BAM) built from a LEGO Mindstorms kit, additional LEGO bricks, and several standard optics components, is described. The BAM was built as part of an undergraduate senior project and was designed, calibrated, and used to image phospholipid, cholesterol, soap, and oil films on the surface of water. A BAM uses p-polarized laser light reflected off a surface at the Brewster angle, which ideally yields zero reflectivity. When a film of different refractive index is added to the surface a small amount of light is reflected, which can be imaged in a microscope camera. Films of only one molecule (approximately 1 nm) thick, a monolayer, can be observed easily in the BAM. The BAM was used in a junior-level Physical Chemistry class to observe phase transitions of a monolayer and the collapse of a monolayer deposited on the water surface in a Langmuir trough. Using a photometric calculation, students observed a change in thickness of a monolayer during a phase transition of 7 Å, which was accurate to within 1 Å of the value determined by more advanced methods. As supplementary material, we provide a detailed manual on how to build the BAM, software to control the BAM and camera, and image processing software.
Capillary contact angle in a completely wet groove.
Parry, A O; Malijevský, A; Rascón, C
2014-10-03
We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θ(cap)(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θ(cap) > 0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θ(cap)(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.
Directory of Open Access Journals (Sweden)
Juliana C Barreiro
Full Text Available This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R-enantiomer, which is the second one to elute at the chromatographic conditions.
Directory of Open Access Journals (Sweden)
Amirsadri R
1998-07-01
Full Text Available Variation of recurred branch of median nerve in relation to the median and flexor retinaculum are significant for both hand surgeons and specialists always. In this study, 64 cadaver hands (32 men have been dissected. The median nerve was identified at the proximal edge of the flexor retinaculum, and in order to expose carpal tunnel the ligament was divided, and the above subjects were studied. The results are: 1 The relation of recurrent nerve to the flexor retinaculum was classified into 4 types: A In (53.1% of subjects, this branch arises from the median after the flexor retinaculum. B In (31.3% of subjects, it arises from the median in the carpal tunnel and the moves around the lower edge of flexor retinaculum and enters the thenar region. C In (14.1% of subjects, it arises from the median in the carpal tunnel and pierces the flexor retinaculum. D In (1.56% of subjects it arises, in the carpal tunnel and it divides into two subbranches here. One follows pattern A and the other pattern C. 2 In this step, the relation of the recurrent branch to the median nerve was studied. The results show that inspite of this image even though most often the recurrent branch arises from the lateral side of median, in (68.75% of subjects it arises from it's anterior surface. The MC Nemar test reveals that there is no relation between manifestation of mentioned patterns with right or left hands.
Directory of Open Access Journals (Sweden)
Maria Antonietta Gambacorta
2018-03-01
Full Text Available Purpose: The aim of this study is to evaluate the long term survival of the addition of gefitinib to chemoradiotherapy (CRT in locally advanced rectal cancer (LARC. Methods and materials: This previously published multicentre, open-label, phase I-II study, enrolled patients (pts with LARC to receive CRT with concurrent 5-fluorouracil continuous intravenous infusion and a dose escalation of orally administered gefitinib, followed 6–8 weeks later by surgery. An intra-operative radiotherapy boost of 10 Gy was planned. Adjuvant chemotherapy was administrated in ypN1-2 pts. After a median f/u of >10 years, we analyzed Local Control (LC, Metastasis Free Survival (MFS, Disease Free Survival (DFS, Disease Specific Survival (DSS and Overall Survival (OS. Predictive endpoints of clinical outcomes were tested by univariate and multivariate analysis. Variables analyzed included: age, gefitinib dose and interruptions, adjuvant CT, surgery type, ypT, ypN, and TRG grade. We have also analyzed late toxicity according to CTCAEv4. Results: Of the 41 initially enrolled pts, 39 were evaluable (27M, 12F. With a median f/u of 133 months, LC, MFS, DFS, OS and DSS at 5 years were 84%; 71%; 64%; 87% and 92%, respectively. The OS and DSS at 10 years were 61,5% and 76%, respectively. Grade 3-4 late toxicity occurred in 38% of pts: sexual (28,2% and gastrointestinal toxicities (10,2%. Conclusion: Long term outcomes and late toxicity were similar to previously reported series. The addition of gefitinib did not improve outcomes in LARC. Gefitinib is not recommended for rectal cancer patients who received 5-FU based preoperative CRT. Further studies may identify if gefitinib is beneficial in selected group of patients. Keywords: Rectal cancer, Gefitinib, Log term follow-up, Chemoradiotherapy
System For Characterizing Three-Phase Brushless dc Motors
Howard, David E.; Smith, Dennis A.
1996-01-01
System of electronic hardware and software developed to automate measurements and calculations needed to characterize electromechanical performances of three-phase brushless dc motors, associated shaft-angle sensors needed for commutation, and associated brushless tachometers. System quickly takes measurements on all three phases of motor, tachometer, and shaft-angle sensor simultaneously and processes measurements into performance data. Also useful in development and testing of motors with not only three phases but also two, four, or more phases.
Angle-adjustable density field formulation for the modeling of crystalline microstructure
Wang, Zi-Le; Liu, Zhirong; Huang, Zhi-Feng
2018-05-01
A continuum density field formulation with particle-scale resolution is constructed to simultaneously incorporate the orientation dependence of interparticle interactions and the rotational invariance of the system, a fundamental but challenging issue in modeling the structure and dynamics of a broad range of material systems across variable scales. This generalized phase field crystal-type approach is based upon the complete expansion of particle direct correlation functions and the concept of isotropic tensors. Through applications to the modeling of various two- and three-dimensional crystalline structures, our study demonstrates the capability of bond-angle control in this continuum field theory and its effects on the emergence of ordered phases, and provides a systematic way of performing tunable angle analyses for crystalline microstructures.
International Nuclear Information System (INIS)
Jang, Jin Hee; Kim, Bum Soo; KIm, Bom Yi; Choi, Hyun Seok; Jung, So Lyung; Ahn, Kook Jin; Sung, Ji Kyeong
2015-01-01
To evaluate the image characteristics of subtraction magnetic resonance venography (SMRV) from time-resolved contrast-enhanced MR angiography (TRMRA) compared with phase-contrast MR venography (PCMRV) and single-phase contrast-enhanced MR venography (CEMRV). Twenty-one patients who underwent brain MR venography (MRV) using standard protocols (PCMRV, CEMRV, and TRMRA) were included. SMRV was made by subtracting the arterial phase data from the venous phase data in TRMRA. Co-registration and subtraction of the two volume data was done using commercially available software. Image quality and the degree of arterial contamination of the three MRVs were compared. In the three MRVs, 19 pre-defined venous structures (14 dural sinuses and 5 cerebral veins) were evaluated. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the three MRVs were also compared. Single-phase contrast-enhanced MR venography showed better image quality (median score 4 in both reviewers) than did the other two MRVs (p < 0.001), whereas SMRV (median score 3 in both reviewers) and PCMRV (median score 3 in both reviewers) had similar image quality (p ≥ 0.951). SMRV (median score 0 in both reviewers) suppressed arterial signal better than did the other MRVs (median score 1 in CEMRV, median score 2 in PCMRV, both reviewers) (p < 0.001). The dural sinus score of SMRV (median and interquartile range [IQR] 48, 43-50 for reviewer 1, 47, 43-49 for reviewer 2) was significantly higher than for PCMRV (median and IQR 31, 25-34 for reviewer 1, 30, 23-32 for reviewer 2) (p < 0.01) and did not differ from that of CEMRV (median and IQR 50, 47-52 for reviewer 1, 49, 45-51 for reviewer 2) (p = 0.146 in reviewer 1 and 0.123 in reviewer 2). The SNR and CNR of SMRV (median and IQR 104.5, 83.1-121.2 and 104.1, 74.9-120.5, respectively) were between those of CEMRV (median and IQR 150.3, 111-182.6 and 148.4, 108-178.2) and PCMRV (median and IQR 59.4, 49.2-74.9 and 53.6, 43.8-69.2). Subtraction magnetic
Allegheny County Median Age at Death
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The median age at death is calculated for each municipality in Allegheny County. Data is based on the decedent's residence at the time of death, not the location...
A theoretical analysis of the median LMF adaptive algorithm
DEFF Research Database (Denmark)
Bysted, Tommy Kristensen; Rusu, C.
1999-01-01
Higher order adaptive algorithms are sensitive to impulse interference. In the case of the LMF (Least Mean Fourth), an easy and effective way to reduce this is to median filter the instantaneous gradient of the LMF algorithm. Although previous published simulations have indicated that this reduces...... the speed of convergence, no analytical studies have yet been made to prove this. In order to enhance the usability, this paper presents a convergence and steady-state analysis of the median LMF adaptive algorithm. As expected this proves that the median LMF has a slower convergence and a lower steady...
The Investigation of Median Frequency Changes in Paraspinal Muscles Following Fatigue
Directory of Open Access Journals (Sweden)
Saeed Talebian
2009-10-01
Conclusion: Median frequency shift toward low values following fatigue in global and local paraspinal muscles was seen. However, median frequency values for the local stabilizer muscle were higher than median frequency values for the global muscles.
Longitudinal Changes of Angle Configuration in Primary Angle-Closure Suspects
Jiang, Yuzhen; Chang, Dolly S.; Zhu, Haogang; Khawaja, Anthony P.; Aung, Tin; Huang, Shengsong; Chen, Qianyun; Munoz, Beatriz; Grossi, Carlota M.
2015-01-01
Objective To determine longitudinal changes in angle configuration in the eyes of primary angle-closure suspects (PACS) treated by laser peripheral iridotomy (LPI) and in untreated fellow eyes. Design Longitudinal cohort study. Participants Primary angle-closure suspects aged 50 to 70 years were enrolled in a randomized, controlled clinical trial. Methods Each participant was treated by LPI in 1 randomly selected eye, with the fellow eye serving as a control. Angle width was assessed in a masked fashion using gonioscopy and anterior segment optical coherence tomography (AS-OCT) before and at 2 weeks, 6 months, and 18 months after LPI. Main Outcome Measures Angle width in degrees was calculated from Shaffer grades assessed under static gonioscopy. Angle configuration was also evaluated using angle opening distance (AOD250, AOD500, AOD750), trabecular-iris space area (TISA500, TISA750), and angle recess area (ARA) measured in AS-OCT images. Results No significant difference was found in baseline measures of angle configuration between treated and untreated eyes. At 2 weeks after LPI, the drainage angle on gonioscopy widened from a mean of 13.5° at baseline to a mean of 25.7° in treated eyes, which was also confirmed by significant increases in all AS-OCT angle width measures (Pgonioscopy (P = 0.18), AOD250 (P = 0.167) and ARA (P = 0.83). In untreated eyes, angle width consistently decreased across all follow-up visits after LPI, with a more rapid longitudinal decrease compared with treated eyes (P values for all variables ≤0.003). The annual rate of change in angle width was equivalent to 1.2°/year (95% confidence interval [CI], 0.8–1.6) in treated eyes and 1.6°/year (95% CI, 1.3–2.0) in untreated eyes (P<0.001). Conclusions Angle width of treated eyes increased markedly after LPI, remained stable for 6 months, and then decreased significantly by 18 months after LPI. Untreated eyes experienced a more consistent and rapid decrease in angle width over the
Intraneural synovial sarcoma of the median nerve
Directory of Open Access Journals (Sweden)
Rahul Kasukurthi
2010-06-01
Full Text Available Synovial sarcomas are soft-tissue malignancies with a poor prognosis and propensity for distant metastases. Although originally believed to arise from the synovium, these tumors have been found to occur anywhere in the body. We report a rare case of synovial sarcoma arising from the median nerve. To our knowledge, this is the twelfth reported case of intraneural synovial sarcoma, and only the fourth arising from the median nerve. Because the diagnosis may not be apparent until after pathological examination of the surgical specimen, synovial sarcoma should be kept in mind when dealing with what may seem like a benign nerve tumor.
The paediatric Bohler's angle and crucial angle of Gissane: a case series
Directory of Open Access Journals (Sweden)
Crawford Haemish A
2011-01-01
Full Text Available Abstract Background Bohler's angle and the crucial angle of Gissane can be used to assess calcaneal fractures. While the normal adult values of these angles are widely known, the normal paediatric values have not yet been established. Our aim is to investigate Bohler's angle and the crucial angle of Gissane in a paediatric population and establish normal paediatric reference values. Method We measured Bohler's angle and the crucial angle of Gissane using normal plain ankle radiographs of 763 patients from birth to 14 years of age completed over a five year period from July 2003 to June 2008. Results In our paediatric study group, the mean Bohler's angle was 35.2 degrees and the mean crucial angle of Gissane was 111.3 degrees. In an adult comparison group, the mean Bohler's angle was 39.2 degrees and the mean crucial angle of Gissane was 113.8 degrees. The differences in Bohler's angle and the crucial angle of Gissane between these two groups were statistically significant. Conclusion We have presented the normal values of Bohler's angle and the crucial angle of Gissane in a paediatric population. These values may provide a useful comparison to assist with the management of the paediatric calcaneal fracture.
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
Efficient scattering angle filtering for Full waveform inversion
Alkhalifah, Tariq Ali
2015-01-01
Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.
Efficient scattering angle filtering for Full waveform inversion
Alkhalifah, Tariq Ali
2015-08-19
Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.
Creation of the {pi} angle standard for the flat angle measurements
Energy Technology Data Exchange (ETDEWEB)
Giniotis, V; Rybokas, M, E-mail: gi@ap.vtu.l, E-mail: MRybokas@gama.l [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40 (Lithuania)
2010-07-01
Angle measurements are based mainly on multiangle prisms - polygons with autocollimators, rotary encoders for high accuracy and circular scales as the standards of the flat angle. Traceability of angle measurements is based on the standard of the plane angle - prism (polygon) calibrated at an appropriate accuracy. Some metrological institutions have established their special test benches (comparators) equipped with circular scales or rotary encoders of high accuracy and polygons with autocollimators for angle calibration purposes. Nevertheless, the standard (etalon) of plane angle - polygon has many restrictions for the transfer of angle unit - radian (rad) and other units of angle. It depends on the number of angles formed by the flat sides of the polygon that is restricted by technological and metrological difficulties related to the production and accuracy determination of the polygon. A possibility to create the standard of the angle equal to {pi} rad or half the circle or the full angle is proposed. It can be created by the circular scale with the rotation axis of very high accuracy and two precision reading instruments, usually, photoelectric microscopes (PM), placed on the opposite sides of the circular scale using the special alignment steps. A great variety of angle units and values can be measured and its traceability ensured by applying the third PM on the scale. Calibration of the circular scale itself and other scale or rotary encoder as well is possible using the proposed method with an implementation of {pi} rad as the primary standard angle. The method proposed enables to assure a traceability of angle measurements at every laboratory having appropriate environment and reading instruments of appropriate accuracy together with a rotary table with the rotation axis of high accuracy - rotation trajectory (runout) being in the range of 0.05 {mu}m. Short information about the multipurpose angle measurement test bench developed is presented.
Wen, Li; Ren, Ziyu; Di Santo, Valentina; Hu, Kainan; Yuan, Tao; Wang, Tianmiao; Lauder, George V
2018-04-10
Although linear accelerations are an important common component of the diversity of fish locomotor behaviors, acceleration is one of the least-understood aspects of propulsion. Analysis of acceleration behavior in fishes with both spiny and soft-rayed median fins demonstrates that fin area is actively modulated when fish accelerate. We implemented an undulatory biomimetic robotic fish model with median fins manufactured using multimaterial three-dimensional printing-a spiny-rayed dorsal fin, soft-rayed dorsal/anal fins, and a caudal fin-whose stiffnesses span three orders of magnitude. We used an array of fluidic elastomeric soft actuators to mimic the dorsal/anal inclinator and erector/depressor muscles of fish, which allowed the soft fins to be erected or folded within 0.3 s. We experimentally show that the biomimetic soft dorsal/anal fin can withstand external loading. We found that erecting the soft dorsal/anal fins significantly enhanced the linear acceleration rate, up to 32.5% over the folded fin state. Surprisingly, even though the projected area of the body (in the lateral plane) increased 16.9% when the median fins were erected, the magnitude of the side force oscillation decreased by 24.8%, which may have led to significantly less side-to-side sway in the robotic swimmer. Visualization of fluid flow in the wake of median fins reveals that during linear acceleration, the soft dorsal fin generates a wake flow opposite in direction to that of the caudal fin, which creates propulsive jets with time-variant circulations and jet angles. Erectable/foldable fins provide a new design space for bioinspired underwater robots with structures that morph to adapt to different locomotor behaviors. This biorobotic fish model is also a potentially promising system for studying the dynamics of complex multifin fish swimming behaviors, including linear acceleration, steady swimming, and burst and coast, which are difficult to analyze in freely swimming fishes.
Angle of arrival estimation using spectral interferometry
International Nuclear Information System (INIS)
Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R.; Krishna Mohan, R.
2010-01-01
We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.
Angle of arrival estimation using spectral interferometry
Energy Technology Data Exchange (ETDEWEB)
Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Krishna Mohan, R., E-mail: krishna@spectrum.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)
2010-09-15
We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.
Gheller, Rodrigo G; Dal Pupo, Juliano; Ache-Dias, Jonathan; Detanico, Daniele; Padulo, Johnny; dos Santos, Saray G
2015-08-01
This study aimed to analyze the effect of different knee starting angles on jump performance, kinetic parameters, and intersegmental coupling coordination during a squat jump (SJ) and a countermovement jump (CMJ). Twenty male volleyball and basketball players volunteered to participate in this study. The CMJ was performed with knee flexion at the end of the countermovement phase smaller than 90° (CMJ(90)), and in a preferred position (CMJ(PREF)), while the SJ was performed from a knee angle of 70° (SJ(70)), 90° (SJ(90)), 110° (SJ(110)), and in a preferred position (SJ(PREF)). The best jump performance was observed in jumps that started from a higher squat depth (CMJ(90). Analysis of continuous relative phase showed that thigh-trunk coupling was more in-phase in the jumps (CMJ and SJ) performed with a higher squat depth, while the leg-thigh coupling was more in-phase in the CMJ(>90) and SJ(PREF). Jumping from a position with knees more flexed seems to be the best strategy to achieve the best performance. Intersegmental coordination and jump performance (CMJ and SJ) were affected by different knee starting angles. Copyright © 2015 Elsevier B.V. All rights reserved.
... Home » Statistics and Data » Glaucoma, Open-angle Listen Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...
Weak mixing angle measurements at hadron colliders
Di Simone, Andrea; The ATLAS collaboration
2015-01-01
The Talk will cover weak mixing angle measurements at hadron colliders ATLAS and CMS in particular. ATLAS has measured the forward-backward asymmetry for the neutral current Drell Yan process in a wide mass range around the Z resonance region using dielectron and dimuon final states with $\\sqrt{s}$ =7 TeV data. For the dielectron channel, the measurement includes electrons detected in the forward calorimeter which extends the covered phase space. The result is then used to extract a measurement of the effective weak mixing angle. Uncertainties from the limited knowledge on the parton distribution functions in the proton constitute a significant part of the uncertainty and a dedicated study is performed to obtain a PDF set describing W and Z data measured previously by ATLAS. Similar studies from CMS will be reported.
Cold intolerance following median and ulnar nerve injuries : prognosis and predictors
Ruijs, A.C.J; Jaquet, J-B.; van Riel, W. G.; Daanen, H. A M; Hovius, S.E.R.
This study describes the predictors for cold intolerance and the relationship to sensory recovery after median and ulnar nerve injuries. The study population consisted of 107 patients 2 to 10 years after median, ulnar or combined median and ulnar nerve injuries. Patients were asked to fill out the
Cold intolerance following median and ulnar nerve injuries : prognosis and predictors
Ruijs, A.C.J.; Jaquet, J.B.; Riel, W.G. van; Daanen, H.A.M.; Hovius, S.E.R.
2007-01-01
This study describes the predictors for cold intolerance and the relationship to sensory recovery after median and ulnar nerve injuries. The study population consisted of 107 patients 2 to 10 years after median, ulnar or combined median and ulnar nerve injuries. Patients were asked to fill out the
Robust non-local median filter
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2017-04-01
This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.
Usefulness of ultrasound assessment of median nerve mobility in carpal tunnel syndrome.
Park, Gi-Young; Kwon, Dong Rak; Seok, Jung Im; Park, Dong-Soon; Cho, Hee Kyung
2018-01-01
Background Carpal tunnel syndrome (CTS) is the most common peripheral compression neuropathy of the upper extremity. Recently, dynamic ultrasound (US) imaging has shown differences in median nerve mobility between the affected and unaffected sides in CTS. Purpose The present study was performed to compare the median nerve mobility between patients with CTS and healthy individuals, and to correlate median nerve mobility with the severity of CTS. Material and Methods A total of 101 patients (128 wrists) with CTS and 43 healthy individuals (70 wrists) were evaluated. Electrodiagnostic studies were initially conducted to determine the neurophysiological grading scale (NGS). The cross-sectional area (CSA) of the median nerve and the grade of median nerve mobility were measured using US. Results The mean grade of median nerve mobility in the CTS group (1.9) was significantly lower than that in the control group (2.6; P mobility and distal motor latency of the median nerve (r = -0.218, P = 0.015), NGS (r = -0.207, P = 0.020) and CSA of the median nerve (r = -0.196, P = 0.028). Conclusion The grade of median nerve mobility was negatively correlated with the severity of CTS. US assessment of median nerve mobility may be useful in diagnosing and determining the severity of CTS.
Repulsion-based model for contact angle saturation in electrowetting.
Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed
2015-01-01
We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.
Estimation of continuous thumb angle and force using electromyogram classification
Directory of Open Access Journals (Sweden)
Abdul Rahman Siddiqi
2016-09-01
Full Text Available Human hand functions range from precise minute handling to heavy and robust movements. Remarkably, 50% of all hand functions are made possible by the thumb. Therefore, developing an artificial thumb that can mimic the actions of a real thumb precisely is a major achievement. Despite many efforts dedicated to this area of research, control of artificial thumb movements in resemblance to our natural movement still poses as a challenge. Most of the development in this area is based on discontinuous thumb position control, which makes it possible to recreate several of the most important functions of the thumb but does not result in total imitation. This work looks into the classification of electromyogram signals from thumb muscles for the prediction of thumb angle and force during flexion motion. For this purpose, an experimental setup is developed to measure the thumb angle and force throughout the range of flexion and simultaneously gather the electromyogram signals. Further, various features are extracted from these signals for classification and the most suitable feature set is determined and applied to different classifiers. A “piecewise discretization” approach is used for continuous angle prediction. Breaking away from previous research studies, the frequency-domain features performed better than the time-domain features, with the best feature combination turning out to be median frequency–mean frequency–mean power. As for the classifiers, the support vector machine proved to be the most accurate classifier giving about 70% accuracy for both angle and force classification and close to 50% for joint angle–force classification.
Action-angle variables for the harmonic oscillator : ambiguity spin x duplication spin
International Nuclear Information System (INIS)
Oliveira, C.R. de; Malta, C.P.
1983-08-01
The difficulties of obtaining for the harmonic oscillator a well defined unitary transformation to action-angle variables were overcome by M. Moshinsky and T.H. Seligman through the introduction of a spinlike variable (ambiguity spin) from a classical point of view. The difficulty of defining a unitary phase operator for the harmonic oscillator was overcome by Roger G. Newton also through the introduction of a spinlike variable (named duplication spin by us) but within a quantum framework. The relation between the ambiguity spin and the duplication spin by introducing these two types of spins in the canonical transformation to action-angle variables is investigated. Doing this it is possible to obtain both well defined unitary transformation and phase operator. (Author) [pt
Canonical action-angle formalism for quantized nonlinear fields
International Nuclear Information System (INIS)
Garbaczewki, P.
1987-01-01
The canonical quantizations of field and action-angle coordinates which (locally) parameterize the phase manifold for the same nonlinear field theory model (e.g. sine-Gordon and nonlinear Schrodinger with the attractive coupling) are reconciled on the common for both cases state space. The classical-quantum relationship is maintained in the mean: coherent state expectation values of operators give rise to classical objects
Energy Technology Data Exchange (ETDEWEB)
Sazideh, M.R., E-mail: Mohammadrezasazideh@gmail.com [Thin Film Lab., Faculty of Physics, Semnan University, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Dizaji, H. Rezagholipour, E-mail: hrgholipour@semnan.ac.ir [Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Ehsani, M.H., E-mail: mhe_ehsani@yahoo.com [Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Moghadam, R. Zarei, E-mail: r.zarei1991@gmail.com [Thin Film Lab., Faculty of Physics, Semnan University, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of)
2017-05-31
Highlights: • SnS thin films produced by thermal evaporation method using glancing angle deposition technique. • At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range. • FESEM images showed drastic changes in the structure and morphology of individual nano-plates as a function of incident angle deposition. - Abstract: Tin sulfide (SnS) films were prepared by thermal evaporation method using Glancing Angle Deposition (GLAD) technique at zero and different oblique incident flux angles (α = 45°, 55°, 65°, 75° and 85°). The physical properties of prepared films were systematically investigated. The X-ray diffraction analysis indicated that the film deposited at α = 0° formed as single phase with an orthorhombic structure. However, the layers became amorphous at α = 45°, 55°, 65°, 75° and 85°. Beside the appearance of amorphous feature in the film prepared at α higher than zero, Sn{sub 2}S{sub 3} phase was also observed. The top and cross-sectional field emission scanning electron microscope (FESEM) images of the samples showed noticeable changes in the structure and morphology of individual nano-plates as a function of incident angle. The band gap and refractive index values of the films were calculated by optical transmission measurements. The optical band-gap values were observed to increase with increasing the incident flux angle. This can be due to presence of Sn{sub 2}S{sub 3} phase observed in the samples produced at α values other than zero. The effective refractive index and porosity exhibit an opposite evolution as the incident angle α rises. At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range.
Sosiaalisen median rooli kunnan viestinnässä
Selkämaa, Kati
2016-01-01
Opinnäytetyön tavoitteena oli selvittää sosiaalisen median roolia kunnan viestinnässä sekä tutkia, miten sosiaalista mediaa hyödynnetään kuntien viestinnässä. Teoriaosuudessa tarkasteltiin sosiaalista mediaa, tutustuttiin sen tunnetuimpiin sovelluksiin sekä perehdyttiin kuntien viestintään yleisesti. Työssä tarkasteltiin myös kuntien viestintään vaikuttavia ja sitä sääteleviä lakeja. Kuntien sosiaalisen median käyttöön tutustuttiin Kuntaliiton tekemän viestintätutkimuksen tulosten pohjalt...
Development of guidelines for cable median barrier systems in Texas.
2009-12-01
Since 2003, the Texas Department of Transportation (TxDOT) has embarked on an aggressive campaign to install : median barriers to prevent cross-median crashes on freeway facilities statewide. In the few years prior to 2003, : virtually all fatalities...
Performance and internal flow characteristics of a cross-flow turbine by guide vane angle
International Nuclear Information System (INIS)
Chen, Z M; Choi, Y D
2013-01-01
This study attempts to investigate the performance and internal flow characteristics of a cross-flow turbine by guide vane angle. In order to improve the performance of a cross flow turbine, the paper presents a numerical investigation of the turbine with air supply and discusses the influence of variable guide vane angle on the internal flow. A newly developed air supply from air suction Hole is adopted. To investigate the performance and internal flow of the cross-flow turbine, the CFD software based on the two-phase flow model is utilized. The numerical grids are made in two-dimensional geometry in order to shorten the time of two-phase calculations. Then a series of CFD analysis has been conducted in the range of different guide vane angle. Moreover, local output power is divided at different stages and the effect of air layer in each stage is examined
Contact angle of sessile drops in Lennard-Jones systems.
Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans
2014-11-18
Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.
International Nuclear Information System (INIS)
Eletsky, V.L.; Ioffe, B.L.
1993-01-01
The recent experimental data on D +- D0 and D *+- D*0 mass differences are used as inputs in the QCD sum rules to obtain new estimates on the mass difference of light quarks and on the difference of their condensates: m d -m u =3±1 MeV, left-angle bar dd right-angle -left-angle bar uu right-angle=-(2.5±1)x10 -3 left-angle bar uu right-angle (at a standard normalization point, μ=0.5 GeV)
The new INRIM rotating encoder angle comparator (REAC)
International Nuclear Information System (INIS)
Pisani, Marco; Astrua, Milena
2017-01-01
A novel angle comparator has been built and tested at INRIM. The device is based on a double air bearing structure embedding a continuously rotating encoder, which is read by two heads: one fixed to the base of the comparator and a second fixed to the upper moving part of the comparator. The phase measurement between the two heads’ signals is proportional to the relative angle suspended between them (and, therefore, the angle between the base and the upper, movable part of the comparator). The advantage of this solution is to reduce the encoder graduation errors and to cancel the cyclic errors due to the interpolation of the encoder lines. By using only two pairs of reading heads, we have achieved an intrinsic accuracy of ±0.04″ (rectangular distribution) that can be reduced through self-calibration. The residual cyclic errors have shown to be less than 0.01″ peak-to-peak. The random fluctuations are less than 0.01″ rms on a 100 s time interval. A further advantage of the rotating encoder is the intrinsic knowledge of the absolute position without the need of a zeroing procedure. Construction details of the rotating encoder angle comparator (REAC), characterization tests, and examples of practical use are given. (paper)
Energy Technology Data Exchange (ETDEWEB)
Putra, Edy Giri Rachman [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Patriati, Arum [Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN), Gedung 40 BATAN, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id (Indonesia)
2015-04-16
Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.
International Nuclear Information System (INIS)
Putra, Edy Giri Rachman; Patriati, Arum
2015-01-01
Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations
International Nuclear Information System (INIS)
Marklund, T.
1978-01-01
The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)
Automated analysis of angle closure from anterior chamber angle images.
Baskaran, Mani; Cheng, Jun; Perera, Shamira A; Tun, Tin A; Liu, Jiang; Aung, Tin
2014-10-21
To evaluate a novel software capable of automatically grading angle closure on EyeCam angle images in comparison with manual grading of images, with gonioscopy as the reference standard. In this hospital-based, prospective study, subjects underwent gonioscopy by a single observer, and EyeCam imaging by a different operator. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. An eye was classified as having angle closure if there were two or more quadrants of closure. Automated grading of the angle images was performed using customized software. Agreement between the methods was ascertained by κ statistic and comparison of area under receiver operating characteristic curves (AUC). One hundred forty subjects (140 eyes) were included, most of whom were Chinese (102/140, 72.9%) and women (72/140, 51.5%). Angle closure was detected in 61 eyes (43.6%) with gonioscopy in comparison with 59 eyes (42.1%, P = 0.73) using manual grading, and 67 eyes (47.9%, P = 0.24) with automated grading of EyeCam images. The agreement for angle closure diagnosis between gonioscopy and both manual (κ = 0.88; 95% confidence interval [CI), 0.81-0.96) and automated grading of EyeCam images was good (κ = 0.74; 95% CI, 0.63-0.85). The AUC for detecting eyes with gonioscopic angle closure was comparable for manual and automated grading (AUC 0.974 vs. 0.954, P = 0.31) of EyeCam images. Customized software for automated grading of EyeCam angle images was found to have good agreement with gonioscopy. Human observation of the EyeCam images may still be needed to avoid gross misclassification, especially in eyes with extensive angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
The small angle diffractometer SANS at PSI
Energy Technology Data Exchange (ETDEWEB)
Wagner, W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-11-01
With the start-up of SINQ an instrument for small angle neutron scattering will be operational which compares well with the world`s largest and most powerful facilities of this kind. Following the classical principle of the D11-instrument of ILL, it is equipped with state-of-the-art components as are nowadays available, including options for further upgrading. Great emphasis was laid upon providing a flexible, universal multi-user facility which guarantees a comfortable and reliable operation. In the present paper, the principle layout of the instrument is presented, and the individual components are described in detail. The paper concludes with model application of small angle scattering to a system of dilute CuCo alloys which undergo a phase separation under thermal treatment, forming spherical Co-precipitates dispersed in a Cu-rich matrix. (author) 3 figs., 1 tab., 14 refs.
Small-angle neutron-scattering studies of the magnetic phase diagram of MnSi
DEFF Research Database (Denmark)
Harris, P.; Lebech, B.; Hae Seop Shim
1995-01-01
The antiferromagnetic order of MnSi has been studied as function of temperature and applied magnetic field using small-angle neutron scattering. The results were analyzed using the three-dimensional resolution function and the scattering cross-section to model the diffraction data. Physical...
Directory of Open Access Journals (Sweden)
L. Li
2018-04-01
Full Text Available The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun’s positions (i.e. solar zenith angles are equal to 45° and 65°. Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm.
Li, L.; Qie, L. L.; Xu, H.; Li, Z. Q.
2018-04-01
The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun's positions (i.e. solar zenith angles are equal to 45° and 65°). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm).
Dong, Jingtao; Lu, Rongsheng
2018-04-30
The simultaneous determination of t, n(λ), and κ(λ) of thin films can be a tough task for the high correlation of fit parameters. The strong assumptions about the type of dispersion relation are commonly used as a consequence to alleviate correlation concerns by reducing the free parameters before the nonlinear regression analysis. Here we present an angle-resolved spectral reflectometry for the simultaneous determination of weakly absorbing thin film parameters, where a reflectance interferogram is recorded in both angular and spectral domains in a single-shot measurement for the point of the sample being illuminated. The variations of the phase recovered from the interferogram as functions of t, n, and κ reveals that the unwrapped phase is monotonically related to t, n, and κ, thereby allowing the problem of correlation to be alleviated by multiple linear regression. After removing the 2π ambiguity of the unwrapped phase, the merit function based on the absolute unwrapped phase performs a 3D data cube with variables of t, n and κ at each wavelength. The unique solution of t, n, and κ can then be directly determined from the extremum of the 3D data cube at each wavelength with no need of dispersion relation. A sample of GaN thin film grown on a polished sapphire substrate is tested. The experimental data of t and [n(λ), κ(λ)] are confirmed by the scanning electron microscopy and the comparison with the results of other related works, respectively. The consistency of the results shows the proposed method provides a useful tool for the determination of the thickness and optical constants of weakly absorbing thin films.
MEAN OF MEDIAN ABSOLUTE DERIVATION TECHNIQUE MEAN ...
African Journals Online (AJOL)
eobe
development of mean of median absolute derivation technique based on the based on the based on .... of noise mean to estimate the speckle noise variance. Noise mean property ..... Foraging Optimization,” International Journal of. Advanced ...
Structure investigations on Portland cement paste by small angle neutron scattering
International Nuclear Information System (INIS)
Dragolici, C.A.; Lin, A.
2004-01-01
Hydrated Portland cement is a very complex material. Cement paste consists of many crystalline and non-crystalline phases in various ranges of sizes (μm and nm scale). The crystalline phases are embedded in amorphous phases of hydration products. We investigated the structural changes of hydrating phases in a time interval up to 18 days, at Budapest Neutron Center's SANS spectrometer. The small angle neutron scattering of Portland cements prepared with a various water-to-cement ratios, gave us information about the microstructure changes in the material. Fractals were a suitable way for structure modelling. Some comments regarding the opportunity of using the most common models are pointed out. (authors)
Hannay angle. Yet another symmetry-protected topological order parameter in classical mechanics
International Nuclear Information System (INIS)
Kariyado, Toshikaze; Hatsugai, Yasuhiro
2016-01-01
The topological way of thinking now goes beyond quantum solids, and topological characters of classical mechanical systems obeying Newton's law are attracting current interest. To provide a physical insight into the topological numbers in mechanics, we demonstrate the use of the Hannay angle, a “classical” Berry phase, as a symmetry-protected topological order parameter. The Hannay angle is derived using a canonical transformation that maps Newton's equation to a Schrödinger-type equation, and the condition for the quantization is discussed in connection with the symmetry in mechanics. Also, we demonstrate the use of the Hannay angle for a topological characterization of a spring-mass model focusing on the bulk-edge correspondence. (author)
International Nuclear Information System (INIS)
Cook, G.O. Jr.; Knight, L.
1979-07-01
The question of optimal projection angles has recently become of interest in the field of reconstruction from projections. Here, studies are concentrated on the n x n pixel space, where literative algorithms such as ART and direct matrix techniques due to Katz are considered. The best angles are determined in a Gauss--Markov statistical sense as well as with respect to a function-theoretical error bound. The possibility of making photon intensity a function of angle is also examined. Finally, the best angles to use in an ART-like algorithm are studied. A certain set of unequally spaced angles was found to be preferred in several contexts. 15 figures, 6 tables
Kinematics of reflections in subsurface offset and angle-domain image gathers
Dafni, Raanan; Symes, William W.
2018-05-01
Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry
Flow-Angle and Airspeed Sensor System (FASS) Using Flush-Mounted Hot-Films, Phase I
National Aeronautics and Space Administration — Micron-thin surface hot-film signatures will be used to simultaneously obtain airspeed and flow direction. The flow-angle and airspeed sensor system (FASS) will...
Baskaran, Mani; Ho, Sue-Wei; Tun, Tin A; How, Alicia C; Perera, Shamira A; Friedman, David S; Aung, Tin
2013-11-01
To evaluate the diagnostic performance of the iris-trabecular contact (ITC) index, a measure of the degree of angle-closure, using swept-source optical coherence tomography (SSOCT, CASIA SS-1000, Tomey Corporation, Nagoya, Japan) in comparison with gonioscopy. Prospective observational study. A total of 108 normal subjects and 32 subjects with angle-closure. The SSOCT 3-dimensional angle scans, which obtain radial scans for the entire circumference of the angle, were performed under dark conditions and analyzed using customized software by a single examiner masked to the subjects' clinical details. The ITC index was calculated as a percentage of the angle that was closed on SSOCT images. First-order agreement coefficient (AC1) statistics and area under the receiver operating characteristic curve (AUC) analyses were performed for angle-closure on the basis of the ITC index in comparison with gonioscopy. Angle-closure on gonioscopy was defined as nonvisibility of posterior trabecular meshwork for at least 2 quadrants. Agreement of the ITC index with gonioscopically defined angle-closure was assessed using the AC1 statistic. Study subjects were predominantly Chinese (95.7%) and female (70.7%), with a mean age of 59.2 (standard deviation, 8.9) years. The median ITC index was 15.24% for gonioscopically open-angle eyes (n = 108) and 48.5% for closed-angle eyes (n = 32) (P = 0.0001). The agreement for angle-closure based on ITC index cutoffs (>35% and ≥50%) and gonioscopic angle-closure was 0.699 and 0.718, respectively. The AUC for angle-closure detection using the ITC index was 0.83 (95% confidence interval, 0.76-0.89), with an ITC index >35% having a sensitivity of 71.9% and specificity of 84.3%. The ITC index is a summary measure of the circumferential extent of angle-closure as imaged with SSOCT. The index had moderate agreement and good diagnostic performance for angle-closure with gonioscopy as the reference standard. Copyright © 2013 American Academy of
Liu, Bingyi
2017-07-01
Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell\\'s law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for full-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the full-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates. The coiling-up space structures are utilized to build desired acoustic gradient metasurface and the full-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface and enables a new degree of the acoustic wave manipulating.
Ruppert, Kai; Amzajerdian, Faraz; Hamedani, Hooman; Xin, Yi; Loza, Luis; Achekzai, Tahmina; Duncan, Ian F; Profka, Harrilla; Siddiqui, Sarmad; Pourfathi, Mehrdad; Cereda, Maurizio F; Kadlecek, Stephen; Rizi, Rahim R
2018-04-22
To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations. © 2018 International Society for Magnetic Resonance in Medicine.
Jalonen, Taru; Suomela, Sonja
2010-01-01
Laurea-ammattikorkeakoulu Tiivistelmä Hyvinkää Sosiaali-, terveys- ja liikunta-ala Hoitotyön koulutusohjelma Terveydenhoitaja AMK Sairaanhoitaja AMK Taru Jalonen, Sonja Suomela Lapset median käyttäjinä Vuosi 2010 Sivumäärä 63 Tämän opinnäytetyön tarkoituksena oli selvittää lasten tottumuksia ja kokemuksia mediasta sekä niiden herättämiä tunteita. Lisäksi selvitimme lasten käyttämiä mediaympäristöjä sekä median näkymistä lasten leikeissä. Tämä työ on os...
New applications using phased array techniques
International Nuclear Information System (INIS)
Erhard, A.; Schenk, G.; Hauser, Th.; Voelz, U.
2001-01-01
In general, the application of phased array techniques used to be limited to heavy components with large wall thicknesses, such as those in the nuclear power industry. With the improvement of the phased array equipment, including phased array search units, other application areas are now accessible for the phased array inspection technique, e.g. the inspection of turbine blade roots, weld inspection with a wall thickness ranging from 12 to 40 mm, inspection of aircraft components, inspection of spot welds and the inspection of concrete building components. The objective for the use of phased array techniques has not significantly changed since their first application, e.g. instant adjustment of the sound beam to the geometry of the test object by steering incidence angle, skew angle and/or sound field focusing. Because some new phased array technique applications are still in the experimental (laboratory) stage, this article will focus on some examples for practical, real-weld applications
Didactical Design Enrichment of Angle in Geometry
Setiadi, D. R.; Suryadi, D.; Mulyana, E.
2017-09-01
The underlying problem of this research is the lack of student’s competencies in understanding the concept of angle in geometry as the results of the teaching and learning pattern that only to receive the topic rather than to construct the topic and has not paid attention to the learning trajectory. The purpose of this research is to develop the didactical design of angle in space learning activity. The used research method is a method of qualitative research in the form of a didactical design research through three phases of analysis i.e. didactical situation analysis, metapedadidactical analysis, and retrospective analysis, which conducted in students from 10th grade at one of private schools in Bandung. Based on the results of research and discussion, the didactical design that has been made, is capable to change student’s learning habit and quite capable to develop student’s competencies although not optimal.
Optimal design of work zone median crossovers.
2010-09-01
The use of temporary median crossovers in work zones allows for the closure of one side of a multi-lane roadway while : maintaining two-way traffic on the opposite side. This process provides the ability for construction and maintenance crews : to co...
Small Angle Neutron Scattering experiments on ``side-on fixed"" liquid crystal polyacrylates
Leroux, N.; Keller, P.; Achard, M. F.; Noirez, L.; Hardouin, F.
1993-08-01
Small Angle Neutron Scattering experiments were carried out on liquid crystalline “side-on fixed” polyacrylates : we observe that the polymer backbone adopts a prolate conformation in the nematic phase. Such anisotropy of the global backbone is larger for smaller spacer length. In every case we measure at low temperatures a large chain extension as previously described in polysiloxanes. Par diffusion des neutrons aux petits angles nous observons que la chaîne de polyacrylates “en haltère” adopte une conformation type prolate en phase nématique. Son anisotropie est d'autant plus grande que l'espaceur est plus court. Dans tous les cas, nous retrouvons à basse température la forte extension de la chaîne polymère qui fut d'abord révélée dans les polysiloxanes.
Characterization of alumina using small angle neutron scattering (SANS)
International Nuclear Information System (INIS)
Megat Harun Al Rashidn Megat Ahmad; Abdul Aziz Mohamed; Azmi Ibrahim; Che Seman Mahmood; Edy Giri Rachman Putra; Muhammad Rawi Muhammad Zin; Razali Kassim; Rafhayudi Jamro
2007-01-01
Alumina powder was synthesized from an aluminium precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was high purity and highly crystalline αphase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder. (Author)
Small angle X-ray scattering from hydrating tricalcium silicate
International Nuclear Information System (INIS)
Vollet, D.
1983-01-01
The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt
Structure investigations on Portland cement paste by small angle neutron scattering
International Nuclear Information System (INIS)
Dragolici, C. A.; Len, A.
2003-01-01
Portland cement pastes consist of many crystalline and non-crystalline phases in various ranges of sizes (nm and mm scale). The crystalline phases are embedded in amorphous phases of the hydration products. We investigated the structural changes of hydrating phases in the time interval of 1-30 days at Budapest Neutron Center's SANS diffractometer. The small angle neutron scattering of Portland cements prepared with a water-to-cement ratio from 0,3 to 0,8 gave us information about the microstructure changes in the material. Fractals were a suitable way for structure modelling. The variation of fractals size depending on the preparation-to-measurement time interval and water-to-cement ratio could be observed. (authors)
Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
2016-01-01
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...
Undetected angle closure in patients with a diagnosis of open-angle glaucoma.
Varma, Devesh K; Simpson, Sarah M; Rai, Amandeep S; Ahmed, Iqbal Ike K
2017-08-01
The aim of this study was to identify the proportion of patients referred to a tertiary glaucoma centre with a diagnosis of open-angle glaucoma (OAG) who were found to have angle closure glaucoma. Retrospective chart review. Consecutive new patients referred for glaucoma management to a tertiary centre between July 2010 and December 2011 were reviewed. Patients whose referrals for glaucoma assessment specified angle status as "open" were included. The data collected included glaucoma specialist's angle assessment, diagnosis, and glaucoma severity. The status of those with 180 degrees or more Shaffer angle grading of 0 was classified as "closed." From 1234 glaucoma referrals, 179 cases were specified to have a diagnosis of OAG or when angles were known to be open. Of these, 16 (8.9%) were found on examination by the glaucoma specialist to have angle closure. Pseudoexfoliation was present in 4 of 16 patients (25%) in the missed angle-closure glaucoma (ACG) group and 22 of 108 patients (13.5%) in the remaining OAG group. There was no difference found in demographic or ocular biometric parameters between those with confirmed OAG versus those with missed ACG. Almost 1 in 11 patients referred by ophthalmologists to a tertiary glaucoma centre with a diagnosis of OAG were in fact found to have angle closure. Given the different treatment approaches for ACG versus OAG, this study suggests a need to strengthen angle evaluations. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Hussin, R.; Holland, D.; Dupree, R.
2000-01-01
Crystalline products of sodium germanate glasses system with composition from 10 mol% to 50 mol% Na 2 O have been investigated using 23 Na magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and x-ray diffraction (XRD). Fitting of the 23 Na NMR spectra of the crystalline phases concerning different crystallographically sodium atom in sodium germanate system are reasonably reproducible as observed by the spectra obtained. The line shape simulations of the 23 Na NMR spectra yielded NMR quadrupolar parameters such as nuclear quadrupole coupling constants (C Q ), asymmetry parameters (η), and isotropic chemical shifts (δ i ). 23 Na NMR isotropic chemical shift may also provide further information on the structural environment of the sodium atom. A simple correlation between structure and NMR parameters to be tested can be used to probe the structure of sodium germanate glasses. The experimental 23 Na chemical shifts correlate well with an empirical shift parameter based on the total oxygen-cation bond valence and Na-O distances of all oxygen atoms in the first coordination sphere of the sodium cation. In this study the different phases in the sodium germanate system were identified. These results show that 23 Na NMR can provide examples of the types of structural information for sodium germanate system. (Author)
DEFF Research Database (Denmark)
Dawood, Farah Z; Khan, Faraaz; Roediger, Mollie P
2013-01-01
the baseline resting 12-lead electrocardiogram of 4,453 HIV-infected patients aged 43.5 ± 9.3 years from the Strategies for Management of Antiretroviral Therapy (SMART) trial. CVD events were identified during a median follow-up of 28.7 months. Quartiles of the spatial QRS-T angle was calculated for men......Widening of the electrocardiographic (ECG) spatial QRS-T angle has been predictive of cardiovascular disease (CVD) events in the general population. However, its prognostic significance in human immunodeficiency virus (HIV)-infected patients remains unknown. The spatial QRS-T angle was derived from...... and women separately, and values in the upper quartile were considered as a widened angle (values >74° for women and >93° for men). A multivariate Cox proportional hazards analysis was used to examine the association between a widened baseline spatial QRS-T angle and incident CVD events. During 11...
Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Tang, Xiao-Lan; Guo, Tongfeng; Zhang, Qingfeng
2017-11-29
This paper proposes an easy, efficient strategy for designing broadband, wide-angle and polarization-independent diffusion metasurface for radar cross section (RCS) reduction. A dual-resonance unit cell, composed of a cross wire and cross loop (CWCL), is employed to enhance the phase bandwidth covering the 2π range. Both oblique-gradient and horizontal-gradient phase supercells are designed for illustration. The numerical results agree well with the theoretical ones. To significantly reduce backward scattering, the random combinatorial gradient metasurface (RCGM) is subsequently constructed by collecting eight supercells with randomly distributed gradient directions. The proposed metasurface features an enhanced specular RCS reduction performance and less design complexity compared to other candidates. Both simulated and measured results show that the proposed RCGM can significantly suppress RCS and exhibits broadband, wide-angle and polarization independence features.
Sosiaalisen median markkinointisuunnitelma uudelle hoitoalan konseptoidulle työvaatemallistolle
Leppälä, Sanna
2017-01-01
Opinnäytetyössä pohdittiin keinoja saada uuden konseptoidun työvaatemalliston näkyvyyttä esille sosiaalisen median keinoin. Toimeksiantaja-yrityksenä toimi suomalainen Virtually Oy ja kohteena oli sen uusi hoitajille suunnattu työvaatemallisto. Malliston ympärille halutaan luoda kestävä brändi ja sosiaalisen median markkinointi on tukemassa brändin tunnettavuutta ja myyntiä. Sosiaalinen media ei yritysten välisessä liiketoiminnassa toimi ainoana markkinoinnin työkaluna, vaan se on tukemas...
In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.
Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen
2017-04-11
The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-12-30
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
Conformation of comb liquid crystal polymers by neutron small angle scattering
International Nuclear Information System (INIS)
Noirez, L.; Pepy, G.
1988-01-01
A review is made of the direct information obtained by small angle neutron scattering about the anisotropy of the components parallel and perpendicular to the orienting magnetic field of the radius of gyration of comb like liquid crystal polymers. The behaviour of the conformation versus temperature is reported for several samples. Until now all samples show an oblate conformation in the smectic phase and probably the whole range of the nematic phase. The results are compared with the available theoretical predictions
Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure
Directory of Open Access Journals (Sweden)
Harsha L Rao
2012-01-01
Full Text Available Background: Blotchy pigments in the anterior chamber (AC angle are considered diagnostic of primary angle closure (PAC. But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects, above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3 and in open angles was 4.7% (95% CI, 3.2-6.3. Blotchy pigments were more frequently seen in inferior (16% and superior quadrants (15% of occludable angles, and inferior quadrant of open angles (4%. Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1. Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments.
Evaluation of blotchy pigments in the anterior chamber angle as a sign of angle closure
Rao, Harsha L; Mungale, Sachin C; Kumbar, Tukaram; Parikh, Rajul S; Garudadri, Chandra S
2012-01-01
Background: Blotchy pigments in the anterior chamber (AC) angle are considered diagnostic of primary angle closure (PAC). But there are no reports either on the prevalence of blotchy pigments in AC angles or the validity of this sign. Aims: To determine the prevalence of blotchy pigments in AC angles and to evaluate their relationship with glaucomatous optic neuropathy (GON) in eyes with occludable angles. Setting and Design: Cross-sectional, comparative study. Materials and Methods: Gonioscopy was performed in 1001 eyes of 526 subjects (245 eyes of 148 consecutive, occludable angle subjects and 756 eyes of 378 non-consecutive, open angle subjects), above 35 years of age. Quadrant-wise location of blotchy pigments was documented. Statistical Analysis: Odds of blotchy pigments in occludable angles against that in open angles were evaluated. Relationship of GON with blotchy pigments in occludable angle eyes was evaluated using a multivariate model. Results: Prevalence of blotchy pigments in occludable angles was 28.6% (95% CI, 22.9-34.3) and in open angles was 4.7% (95% CI, 3.2-6.3). Blotchy pigments were more frequently seen in inferior (16%) and superior quadrants (15%) of occludable angles, and inferior quadrant of open angles (4%). Odds of superior quadrant blotchy pigments in occludable angles were 33 times that in open angles. GON was seen in 107 occludable angle eyes. Blotchy pigments were not significantly associated with GON (odds ratio = 0.5; P = 0.1). Conclusions: Blotchy pigments were seen in 28.6% of occludable angle eyes and 4.7% of open angles eyes. Presence of blotchy pigments in the superior quadrant is more common in occludable angles. Presence of GON in occludable angle eyes was not associated with blotchy pigments. PMID:23202393
Nguyen, Ha; Kang, Sungmin; Tokita, Masatoshi; Watanabe, Junji
2011-07-01
New homologs of bent molecules with a large bent-angle central core of 4,6-dichloro benzene and an alkylthio terminal tail have been synthesized. Although the corresponding alkoxy-tail homologs show only the calamitic phases because of its large bent angles around 160°, the new homologs with an alkylthio tail exhibit the antiferroelectric smectic APA (SmAPA) banana phase that is transformed on cooling from the calamitic smectic A (SmA) phase. The biaxial polar packing of bent molecules in the SmAPA phase is considered to arise from the hindered rotation around the molecular long axis due to the expansion of the mesophase temperatures to a lower temperature region. This study indicates that the bent molecules, even with a large bent angle, have the potential to form a switchable banana phase with a remarkable decrease in its phase temperature range to around 60 °C.
Advances and applications of dynamic-angle spinning nuclear magnetic resonance
International Nuclear Information System (INIS)
Baltisberger, J.H.
1993-06-01
This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87 Rb and 85 Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem
Sosiaalisen median rooli mikroyrittäjän ostoprosessissa
Martikainen, Inkeri
2014-01-01
Opinnäytetyön tavoite oli selvittää sosiaalisen median rooli mikroyrittäjän ostoprosessissa; miten mikroyrittäjä hakee tietoa sosiaalisesta mediasta ja millainen vaikutus sieltä löytyvillä käyttäjäarvioilla on ostopäätökseen. Opinnäytetyö tehtiin erään finanssialan yrityksen toimeksiantona. Opinnäytetyön tarkoituksena oli antaa digitaalisen markkinoinnin ammattilaisille tietoa siitä, miten mikroyrittäjiä voidaan tavoittaa sosiaalisen median kautta, ja saada näin uusia asiakkaita. Tutkimus...
Median forehead flap - beyond classic indication
Directory of Open Access Journals (Sweden)
Cristian R. Jecan
2016-11-01
Full Text Available Introduction. The paramedian forehead flap is one of the best options for reconstruction of the median upper two-thirds of the face due to its vascularity, color, texture match and ability to resurface all or part of the reconstructed area. The forehead flap is the gold standard for nasal soft tissue reconstruction and the flap of choice for larger cutaneous nasal defects having a robust pedicle and large amount of tissue. Materials and Methods. We are reporting a clinical series of cutaneous tumors involving the nose, medial canthus, upper and lower eyelid through a retrospective review of 6 patients who underwent surgical excision of the lesion and primary reconstruction using a paramedian forehead flap. Results. The forehead flap was used for total nose reconstruction, eyelids and medial canthal reconstruction. All flaps survived completely and no tumor recurrence was seen in any of the patients. Cosmetic and functional results were favorable. Conclusions. The forehead flap continues to be one of the best options for nose reconstruction and for closure of surgical defects of the nose larger than 2 cm. Even though is not a gold standard, median forehead flap can be an advantageous technique in periorbital defects reconstruction.
Ultrahigh-frequency ultrasound of fascicles in the median nerve at the wrist.
Cartwright, Michael S; Baute, Vanessa; Caress, James B; Walker, Francis O
2017-10-01
An ultrahigh-frequency (70 MHZ) ultrasound device has recently been approved for human use. This study seeks to determine whether this device facilitates counting of fascicles within the median nerve at the wrist. Twenty healthy volunteers underwent imaging of the median nerve at the wrist bilaterally. The number of fascicles in each nerve was counted by two independent raters. The mean fascicle number was 22.68. Correlation was strong between the two raters (r = 0.68, P nerve area did not predict fascicle number. Those with bifid median nerves and persistent median arteries had lower fascicle density than those without anatomic anomalies (1.79 vs. 2.29; P = 0.01). Fascicles within the median nerve at the wrist can be readily imaged. Ultrahigh-frequency ultrasound technology may be informative in a variety of disorders affecting the peripheral nervous system. Muscle Nerve 56: 819-822, 2017. © 2017 Wiley Periodicals, Inc.
Muzasti, R. A.; Lubis, H. R.
2018-03-01
Phase angle, a parameter by Bioelectrical Impedance Analysis, can detect body composition changes, so it can be used as a prognostic indicator in some chronic conditions. This study was for determining the relationship between PhA and hemodiálisis frequency with the survival of chronic hemodiálisis patients. This longitudinal retrospective study involved 173 chronic hemodiálisis patients at Rasyida Renal Hospital. The Kaplan-Meier method is used to determine the survival. Cox proportional hazard analysis is used to determine which variables significantly increase mortality. During the study period, 89 patients underwent hemodiálysis 3x a week (4 hours/session), and 84 patients underwent HD 2x a week (5 hours/session). Demographic and clinical characteristics in both groups were similar. There was no difference in PhA value in groups of 3x a week and group 2x a week (4.02 ± 1.13 vs 4.25 ± 1.12). Patients with twice a week hemodiálisis had a shorter survival than the 3x week group (35.14 ± 2.76 vs 38.62 ± 3.03) although it was not statistically significant (p = 0.126).
International Nuclear Information System (INIS)
Takahashi, Hiroshi; Hayakawa, Tomohiro; Ito, Kazuki; Takata, Masaki; Kobayashi, Toshihide
2010-01-01
Cardiolipin (CL) is a membrane phospholipid containing four fatty acid chains. CL plays an important role in energy transformation in mitochondria. The disorder of CL biosynthesis is involved in a genetic disease, Barth syndrome. Alteration of fatty acid composition of CLs has been found in Barth syndrome patients, i.e., the decrease of unsaturated fatty acid chains. In this study, we investigated how the degree of saturation alters the structure of CL bilayers by using X-ray scattering. Bovine heart CL and two synthetic CLs were compared. Fatty acid compositions of these three CLs have different saturation. Small-angle X-ray scattering data showed that the decrease of the number of double bonds in the unsaturated fatty acid chains causes to thicken the CL bilayers. In addition, wide-angle X-ray scattering data suggested that the decrease reduces the degree of disorder of the hydrophobic region in a liquid crystalline phase. These results may be related to the dysfunction of mitochondria in Barth syndrome.
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Hiroshi [Biophysics Laboratory, Department of Chemistry and Chemical Biology, Gunma University, Maebashi, Gunma, 371-8510 (Japan); Hayakawa, Tomohiro [Life Science Laboratory, Advanced Materials Laboratories, Sony Corporation, Yushima, Bunkyo-ku, Tokyo, 113-8510 (Japan); Ito, Kazuki; Takata, Masaki [Structural Materials Science Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Kobayashi, Toshihide, E-mail: htakahas@chem-bio.gunma-u.ac.j [Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198 (Japan)
2010-10-01
Cardiolipin (CL) is a membrane phospholipid containing four fatty acid chains. CL plays an important role in energy transformation in mitochondria. The disorder of CL biosynthesis is involved in a genetic disease, Barth syndrome. Alteration of fatty acid composition of CLs has been found in Barth syndrome patients, i.e., the decrease of unsaturated fatty acid chains. In this study, we investigated how the degree of saturation alters the structure of CL bilayers by using X-ray scattering. Bovine heart CL and two synthetic CLs were compared. Fatty acid compositions of these three CLs have different saturation. Small-angle X-ray scattering data showed that the decrease of the number of double bonds in the unsaturated fatty acid chains causes to thicken the CL bilayers. In addition, wide-angle X-ray scattering data suggested that the decrease reduces the degree of disorder of the hydrophobic region in a liquid crystalline phase. These results may be related to the dysfunction of mitochondria in Barth syndrome.
A superconducting large-angle magnetic suspension. Final report
International Nuclear Information System (INIS)
Downer, J.R.; Anastas, G.V. Jr.; Bushko, D.A.; Flynn, F.J.; Goldie, J.H.; Gondhalekar, V.; Hawkey, T.J.; Hockney, R.L.; Torti, R.P.
1992-12-01
SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible
Energy Technology Data Exchange (ETDEWEB)
Englbrecht, F; Lindner, F; Bin, J; Wislsperger, A; Reiner, M; Kamp, F; Belka, C; Dedes, G; Schreiber, J; Parodi, K [LMU Munich, Munich, Bavaria (Germany)
2016-06-15
Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by an online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser
Median Robust Extended Local Binary Pattern for Texture Classification.
Liu, Li; Lao, Songyang; Fieguth, Paul W; Guo, Yulan; Wang, Xiaogang; Pietikäinen, Matti
2016-03-01
Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP's high performance-robust to gray scale variations, rotation changes and noise-but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption.
Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone
International Nuclear Information System (INIS)
Lee, Kang ll; Hughes, E R; Humphrey, V F; Leighton, T G; Choi, Min Joo
2007-01-01
The Biot and the modified Biot-Attenborough (MBA) models have been found useful to understand ultrasonic wave propagation in cancellous bone. However, neither of the models, as previously applied to cancellous bone, allows for the angular dependence of acoustic properties with direction. The present study aims to account for the acoustic anisotropy in cancellous bone, by introducing empirical angle-dependent input parameters, as defined for a highly oriented structure, into the Biot and the MBA models. The anisotropy of the angle-dependent Biot model is attributed to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment. The angle-dependent MBA model employs a simple empirical way of using the parametric fit for the fast and the slow wave speeds. The angle-dependent models were used to predict both the fast and slow wave velocities as a function of propagation angle with respect to the trabecular alignment of cancellous bone. The predictions were compared with those of the Schoenberg model for anisotropy in cancellous bone and in vitro experimental measurements from the literature. The angle-dependent models successfully predicted the angular dependence of phase velocity of the fast wave with direction. The root-mean-square errors of the measured versus predicted fast wave velocities were 79.2 m s -1 (angle-dependent Biot model) and 36.1 m s -1 (angle-dependent MBA model). They also predicted the fact that the slow wave is nearly independent of propagation angle for angles about 50 0 , but consistently underestimated the slow wave velocity with the root-mean-square errors of 187.2 m s -1 (angle-dependent Biot model) and 240.8 m s -1 (angle-dependent MBA model). The study indicates that the angle-dependent models reasonably replicate the acoustic anisotropy in cancellous bone
sEMG feature evaluation for identification of elbow angle resolution in graded arm movement.
Castro, Maria Claudia F; Colombini, Esther L; Aquino, Plinio T; Arjunan, Sridhar P; Kumar, Dinesh K
2014-11-25
Automatic and accurate identification of elbow angle from surface electromyogram (sEMG) is essential for myoelectric controlled upper limb exoskeleton systems. This requires appropriate selection of sEMG features, and identifying the limitations of such a system.This study has demonstrated that it is possible to identify three discrete positions of the elbow; full extension, right angle, and mid-way point, with window size of only 200 milliseconds. It was seen that while most features were suitable for this purpose, Power Spectral Density Averages (PSD-Av) performed best. The system correctly classified the sEMG against the elbow angle for 100% cases when only two discrete positions (full extension and elbow at right angle) were considered, while correct classification was 89% when there were three discrete positions. However, sEMG was unable to accurately determine the elbow position when five discrete angles were considered. It was also observed that there was no difference for extension or flexion phases.
Extended phase graphs with anisotropic diffusion
Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.
2010-08-01
The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.
Speckle Reduction and Structure Enhancement by Multichannel Median Boosted Anisotropic Diffusion
Directory of Open Access Journals (Sweden)
Yang Zhi
2004-01-01
Full Text Available We propose a new approach to reduce speckle noise and enhance structures in speckle-corrupted images. It utilizes a median-anisotropic diffusion compound scheme. The median-filter-based reaction term acts as a guided energy source to boost the structures in the image being processed. In addition, it regularizes the diffusion equation to ensure the existence and uniqueness of a solution. We also introduce a decimation and back reconstruction scheme to further enhance the processing result. Before the iteration of the diffusion process, the image is decimated and a subpixel shifted image set is formed. This allows a multichannel parallel diffusion iteration, and more importantly, the speckle noise is broken into impulsive or salt-pepper noise, which is easy to remove by median filtering. The advantage of the proposed technique is clear when it is compared to other diffusion algorithms and the well-known adaptive weighted median filtering (AWMF scheme in both simulation and real medical ultrasound images.
DEFF Research Database (Denmark)
Hahn, Thomas; Foldspang, Anders
1997-01-01
Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations with par......Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations...... with participation in sport. Three hundred and thirty-nine athletes had their Q angle measured. The mean of right-side Q angles was higher than left side, and the mean Q angle was higher in women than in men. The Q angle was positively associated with years of jogging, and negatively with years of soccer, swimming...... and sports participation at all. It is concluded that the use of Q angle measurements is questionable....
Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method.
Zhu, Guangpu; Yao, Jun; Zhang, Lei; Sun, Hai; Li, Aifen; Shams, Bilal
2016-11-15
A large amount of residual oil, which exists as isolated oil slugs, remains trapped in reservoirs after water flooding. Numerous numerical studies are performed to investigate the fundamental flow mechanism of oil slugs to improve flooding efficiency. Dynamic contact angle models are usually introduced to simulate an accurate contact angle and meniscus displacement of oil slugs under a high capillary number. Nevertheless, in the oil slug flow simulation process, it is unnecessary to introduce the dynamic contact angle model because of a negligible change in the meniscus displacement after using the dynamic contact angle model when the capillary number is small. Therefore, a critical capillary number should be introduced to judge whether the dynamic contact model should be incorporated into simulations. In this study, a direct numerical simulation method is employed to simulate the oil slug flow in a capillary tube at the pore scale. The position of the interface between water and the oil slug is determined using the phase-field method. The capacity and accuracy of the model are validated using a classical benchmark: a dynamic capillary filling process. Then, different dynamic contact angle models and the factors that affect the dynamic contact angle are analyzed. The meniscus displacements of oil slugs with a dynamic contact angle and a static contact angle (SCA) are obtained during simulations, and the relative error between them is calculated automatically. The relative error limit has been defined to be 5%, beyond which the dynamic contact angle model needs to be incorporated into the simulation to approach the realistic displacement. Thus, the desired critical capillary number can be determined. A three-dimensional universal chart of critical capillary number, which functions as static contact angle and viscosity ratio, is given to provide a guideline for oil slug simulation. Also, a fitting formula is presented for ease of use.
An investigation on the noise reduction performance of profiled rigid median barriers at highways
Directory of Open Access Journals (Sweden)
Mohammad Reza Monazzam
2012-01-01
Full Text Available Median barriers as a portion of a divided highway are provided to minimize the cross-median crashes. Moreover, median barriers similar to roadside noise barriers could protect people from transportation noise. Thus, there is a need to investigate various median barrier models to identify changes of insertion loss over a simple rigid barrier. In order to estimate the acoustical influence of median barrier′s profile in the shadow zone, different median barrier models are presented and their insertion losses are calculated over a frequency range from 50 to 4000 Hz using a two-dimensional boundary element method. The present investigation has clearly revealed that among the profiled median barriers, T-shape, Y-shape, and L-shape provide better performance than that of the other shapes. It is also found that among inclined barriers, V-shape barrier significantly presents higher values of attenuation. Based on the calculation of different geometrics, it has been shown that a further 2 dB (A in efficiency could be obtained by a better design of the median barrier which is labeled model "L."
Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...
Invited Review Article: Measurement uncertainty of linear phase-stepping algorithms
Energy Technology Data Exchange (ETDEWEB)
Hack, Erwin [EMPA, Laboratory Electronics/Metrology/Reliability, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Burke, Jan [Australian Centre for Precision Optics, CSIRO (Commonwealth Scientific and Industrial Research Organisation) Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia)
2011-06-15
Phase retrieval techniques are widely used in optics, imaging and electronics. Originating in signal theory, they were introduced to interferometry around 1970. Over the years, many robust phase-stepping techniques have been developed that minimize specific experimental influence quantities such as phase step errors or higher harmonic components of the signal. However, optimizing a technique for a specific influence quantity can compromise its performance with regard to others. We present a consistent quantitative analysis of phase measurement uncertainty for the generalized linear phase stepping algorithm with nominally equal phase stepping angles thereby reviewing and generalizing several results that have been reported in literature. All influence quantities are treated on equal footing, and correlations between them are described in a consistent way. For the special case of classical N-bucket algorithms, we present analytical formulae that describe the combined variance as a function of the phase angle values. For the general Arctan algorithms, we derive expressions for the measurement uncertainty averaged over the full 2{pi}-range of phase angles. We also give an upper bound for the measurement uncertainty which can be expressed as being proportional to an algorithm specific factor. Tabular compilations help the reader to quickly assess the uncertainties that are involved with his or her technique.
COLOUR IMAGE STEGANOGRAPHY USING MEDIAN MAINTENANCE
Directory of Open Access Journals (Sweden)
S. Arivazhagan
2011-08-01
Full Text Available Steganographic algorithms in the recent past have been producing stego images with perceptual invisibility, better secrecy and certain robustness against attacks like cropping, filtering etc. Recovering a good quality secret from a good quality stego image may not always be possible. The method proposed in this paper works in transform domain and attempts to extract the secret almost as same as the embedded one maintaining minimal changes to the cover image by using techniques like median maintenance, offset and quantization.
Electromyogram median power frequency in dynamic exercise at medium exercise intensities
Ament, W; Bonga, GJJ; Hof, AL; Verkerke, GJ
The electromyogram (EMG) median power Frequency of the calf muscles was investigated during an exhausting treadmill exercise and a 20-min recovery period. The exercise was an uphill run at a speed of 5 km . h(-1) and a gradient of 20%. During exercise there was no decrease of EMG median power
International Nuclear Information System (INIS)
Tashiro, Kohji; Yamamoto, Hiroko; Yoshioka, Taiyo; Ninh, Tran Hai; Shimada, Shigeru; Nakatani, Takeshi; Iwamoto, Hiroyuki; Ohta, Noboru; Masunaga, Hiroyasu
2012-01-01
A simultaneous measurement system of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and Raman or transmission-type infrared spectroscopy was developed by us. Its purposes is to clarify the static and dynamic structural changes of polymer materials subjected to the various external condition changes. Some examples described here include the study of the stretch-induced reorientation phenomenon of a-axially-oriented polyethylene, the study of structural change in photo-induced solid-state polymerization reaction of muconic acid ester monomer crystal, the study of the two-stage high-temperature phase transitions of aliphatic nylons, the study of stress-induced crystalline phase transition of an oriented poly(tetramethylene terephthalate) sample and its relation to the higher-order structural change, and the study of structural regularization process of poly(L-lactic acid) in the isothermal crystallization of the meso phase. These case studies in the clarification of hierarchical structural changes of polymer materials have proven that the simultaneous measurement systems can be useful to examine the structural changes in polymer systems. (author)
Precision interferometric measurement of right angles with the aid of an etalon
International Nuclear Information System (INIS)
Oreb, B.; Walsh, C.; Leistner, A.
2000-01-01
Full text: An interferometric set up has been developed to measure right angles between faces of components such as prisms or cubes, to sub arc second resolution. The component to be measured is placed inside an air spaced etalon and the right angle is measured by a Fizeau interferometer with respect to a transmission reference flat. The etalon consists of two precision glass flats which are aligned to be parallel by optically contacting these to a cylindrical Zerodur sleeve having flat and parallel ends. A circular cut out in the cylindrical sleeve is made to allow the test component and the light from the interferometer to enter the etalon. The phase difference in the two halves of the interferogram corresponding to the two sides of the test component is a measure of the angle deviation from 90 deg
Phase and vacancy behaviour of hard "slanted" cubes
van Damme, R.; van der Meer, B.; van den Broeke, J. J.; Smallenburg, F.; Filion, L.
2017-01-01
We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the “slant” angle). More specifically, using a combination of eventdriven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations,
Ong, S T; Ngeow, W C
1999-05-01
Sinus on the chin can be the result of a chronic apical abscess due to pulp necrosis of a mandibular anterior tooth. The tooth is usually asymptomatic, and a dental cause is therefore not apparent to the patient or the unsuspecting clinician. Not infrequently, the patient may seek treatment from a dermatologist or general surgeon instead of a dentist. Excision and repair of the fistula may be carried out with subsequent breakdown because the dental pathology is not removed. This paper reports the presence of median mental sinus of dental origin in twins. One case healed following root canal therapy while the other required both root canal therapy and surgery to eliminate the infection.
DEFF Research Database (Denmark)
Jørgensen, Allan Grønlund; Larsen, Kasper Green
2011-01-01
and several natural special cases thereof. The rst special case is known as range median, which arises when k is xed to b(j i + 1)=2c. The second case, denoted prex selection, arises when i is xed to 0. Finally, we also consider the bounded rank prex selection problem and the xed rank range......Range selection is the problem of preprocessing an input array A of n unique integers, such that given a query (i; j; k), one can report the k'th smallest integer in the subarray A[i];A[i+1]; : : : ;A[j]. In this paper we consider static data structures in the word-RAM for range selection...... selection problem. In the former, data structures must support prex selection queries under the assumption that k for some value n given at construction time, while in the latter, data structures must support range selection queries where k is xed beforehand for all queries. We prove cell probe lower bounds...
Hansen, Steen Ingemann; Petersen, Per Hyltoft; Lund, Flemming; Fraser, Callum G; Sölétormos, György
2017-10-26
During monitoring of monthly medians of results from patients undertaken to assess analytical stability in routine laboratory performance, the medians for serum sodium for male and female patients were found to be significantly related. Daily, weekly and monthly patient medians of serum sodium for both male and female patients were calculated from results obtained on samples from the population >18 years on three analysers in the hospital laboratory. The half-range of medians was applied as an estimate of the maximum bias. Further, the ratios between the two medians were calculated. The medians of both genders demonstrated dispersions over time, but they were closely connected in like patterns, which were confirmed by the half-range of the ratios of medians for males and females that varied from 0.36% for daily, 0.14% for weekly and 0.036% for monthly ratios over all instruments. The tight relationship between the gender medians for serum sodium is only possible when raw laboratory data are used for calculation. The two patient medians can be used to confirm both and are useful as independent estimates of analytical bias during constant calibration periods. In contrast to the gender combined median, the estimate of analytical bias can be confirmed further by calculation of the ratios of medians for males and females.
Phase angle as a nutritional evaluation tool in all stages of chronic liver disease.
Peres, W A F; Lento, D F; Baluz, K; Ramalho, A
2012-01-01
Malnutrition is commonly and frequently under-diagnosed in clinical settings in patients with chronic liver disease (CLD) due to the limitations of nutritional evaluation methods in this population. We hypothesized that the bioelectrical impedance analysis derived phase angle (BIA-derived PhA) might be considered as a nutritional indicator in CLD since it represents either cell death or malnutrition characterized by changes in cellular membrane integrity. The aim of this study was to evaluate the BIA-derived PhA as a nutritional evaluation tool in all stages of CLD, including chronic hepatitis, liver cirrhosis and hepatocellular carcinoma (HCC). Liver-related death and survival were evaluated. A total of 66 patients were enrolled in a cross-sectional study. For the nutritional diagnosis, mid-arm circumference (MAC), triceps skinfold thickness (TST), mid-arm muscle circumference (MAMC) and Subject Global Assessment (SGA) were evaluated. Biochemical and clinical evaluations were performed. Our results showed that PhA was higher in well-nourished patients, according to SGA and in the patients without hepatic encephalopathy. PhA correlated significantly with MAMC, MAC and albumin and was inversely correlated with age. No correlation was found between PhA values and the Child-Pugh score and ascites. PhA was strongly associated with survival and PhA ≤ 5.18º with relative risk increase of 2.5 for death. We conclude that the BIA-derived PhA is a relevant nutritional evaluation tool in chronic hepatitis, liver cirrhosis and HCC and the role of PhA in the prediction of survival in CLD should be examined further in a controlled study.
Viita, Shir
2017-01-01
Viita, Shir. Voimaa visuaalisuudesta – Narratiivinen kirjallisuuskatsaus visuaalisen sosiaalisen median vaikutuksista nuorten aikuisten hyvinvointiin. Kevät 2016. 52 s., 1 liite. Diakonia ammattikorkeakoulu. Sosiaalialan koulutusohjelma, sosionomin suuntautumisvaihtoehto. Sosionomi (AMK). Opinnäytetyön tavoitteena on tuottaa tietoa sosiaalialan ammattilaisille visuaalisen sosiaalisen median sivustojen Instagramin ja Snapchatin vaikutuksista nuorten aikuisten hyvinvointiin. Opinnäyte...
Application of median-equation approach for outlier detection in geodetic networks
Directory of Open Access Journals (Sweden)
Serif Hekimoglu
Full Text Available In geodetic measurements some outliers may occur sometimes in data sets, depending on different reasons. There are two main approaches to detect outliers as Tests for outliers (Baarda's and Pope's Tests and robust methods (Danish method, Huber method etc.. These methods use the Least Squares Estimation (LSE. The outliers affect the LSE results, especially it smears the effects of the outliers on the good observations and sometimes wrong results may be obtained. To avoid these effects, a method that does not use LSE should be preferred. The median is a high breakdown point estimator and if it is applied for the outlier detection, reliable results can be obtained. In this study, a robust method which uses median with or as a treshould value on median residuals that are obtained from median equations is proposed. If the a priori variance of the observations is known, the reliability of the new approch is greater than the one in the case where the a priori variance is unknown.
Functional and Structural Changes in a Canine Model of Hereditary Primary Angle-Closure Glaucoma
Kecova, Helga; Harper, Matthew M.; Nilaweera, Wijitha; Kuehn, Markus H.; Kardon, Randy H.
2010-01-01
Purpose. To characterize functional and structural changes in a canine model of hereditary primary angle-closure glaucoma. Methods. Intraocular pressure (IOP) was evaluated with tonometry in a colony of glaucomatous dogs at 8, 15, 18, 20, and 30 months of age. Retinal function was evaluated using electroretinography (scotopic, photopic, and pattern). Examination of anterior segment structures was performed using gonioscopy and high-frequency ultrasonography (HFU). Results. A gradual rise in IOP was observed with an increase in age: 8 months, 14 mm Hg (median value); 15 months, 15.5 mm Hg; 18 months, 17.5 mm Hg; 20 months, 24 mm Hg; 30 months, 36 mm Hg. Provocative testing with mydriatic agents (tropicamide and atropine 1%) caused significant increases in IOP (35% and 50%, respectively). HFU analysis showed complete collapse of iridocorneal angles by 20 months of age. Scotopic and photopic ERG analysis did not reveal significant deficits, but pattern ERG analysis showed significantly reduced amplitudes in glaucomatous dogs (glaucoma, 3.5 ± 0.4 μV; control, 6.2 ± 0.3 μV; P = 0.004; Student's t-test). Histologic analysis revealed collapse of the iridocorneal angle, posterior bowing of the lamina cribrosa, swelling and loss of large retinal ganglion cells, increased glial reactivity, and increased thickening of the lamina cribrosa. Conclusions. Canine hereditary angle-closure glaucoma is characterized by a progressive increase in intraocular pressure, loss of optic nerve function, and retinal ganglion cell loss. PMID:19661222
Angle Performance on Optima XE
International Nuclear Information System (INIS)
David, Jonathan; Satoh, Shu
2011-01-01
Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1σ). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.
Phase Image Analysis in Conduction Disturbance Patients
Energy Technology Data Exchange (ETDEWEB)
Kwark, Byeng Su; Choi, Si Wan; Kang, Seung Sik; Park, Ki Nam; Lee, Kang Wook; Jeon, Eun Seok; Park, Chong Hun [Chung Nam University Hospital, Daejeon (Korea, Republic of)
1994-03-15
It is known that the normal His-Purkinje system provides for nearly synchronous activation of right (RV) and left (LV) ventricles. When His-Purkinje conduction is abnormal, the resulting sequence of ventricular contraction must be correspondingly abnormal. These abnormal mechanical consequences were difficult to demonstrate because of the complexity and the rapidity of its events. To determine the relationship of the phase changes and the abnormalities of ventricular conduction, we performed phase image analysis of Tc-RBC gated blood pool scintigrams in patients with intraventricular conduction disturbances (24 complete left bundle branch block (C-LBBB), 15 complete right bundle branch block (C-RBBB), 13 Wolff-Parkinson-White syndrome (WPW), 10 controls). The results were as follows; 1) The ejection fraction (EF), peak ejection rate (PER), and peak filling rate (PFR) of LV in gated blood pool scintigraphy (GBPS) were significantly lower in patients with C-LBBB than in controls (44.4 +- 13.9% vs 69.9 +- 4.2%, 2.48 +- 0.98 vs 3.51 +- 0,62, 1.76 +- 0.71 vs 3.38 +- 0.92, respectively, p<0.05). 2) In the phase angle analysis of LV, Standard deviation (SD), width of half maximum of phase angle (FWHM), and range of phase angle were significantly increased in patients with C-LBBB than in controls (20.6 + 18.1 vs S.6 + I.8, 22. 5 + 9.2 vs 16.0 + 3.9, 95.7 + 31.7 vs 51.3 + 5.4, respectively, p<0.05). 3) There was no significant difference in EF, PER, PFR between patients with the WolffParkinson-White syndrome and controls. 4) Standard deviation and range of phase angle were significantly higher in patients with WPW syndrome than in controls (10.6 + 2.6 vs 8.6 + 1.8, p<0.05, 69.8 + 11.7 vs 51.3 + 5 4, p<0.001, respectively), however, there was no difference between the two groups in full width of half maximum. 5) Phase image analysis revealed relatively uniform phase across the both ventriles in patients with normal conduction, but markedly delayed phase in the left ventricle
DEFF Research Database (Denmark)
Hansen, Steen Ingemann; Petersen, Per Hyltoft; Lund, Flemming
2017-01-01
BACKGROUND: During monitoring of monthly medians of results from patients undertaken to assess analytical stability in routine laboratory performance, the medians for serum sodium for male and female patients were found to be significantly related. METHODS: Daily, weekly and monthly patient medians...... all instruments. CONCLUSIONS: The tight relationship between the gender medians for serum sodium is only possible when raw laboratory data are used for calculation. The two patient medians can be used to confirm both and are useful as independent estimates of analytical bias during constant...... calibration periods. In contrast to the gender combined median, the estimate of analytical bias can be confirmed further by calculation of the ratios of medians for males and females....
A GPU-Based Genetic Algorithm for the P-Median Problem
AlBdaiwi, Bader F.; AboElFotoh, Hosam M. F.
2016-01-01
The p-median problem is a well-known NP-hard problem. Many heuristics have been proposed in the literature for this problem. In this paper, we exploit a GPGPU parallel computing platform to present a new genetic algorithm implemented in Cuda and based on a Pseudo Boolean formulation of the p-median problem. We have tested the effectiveness of our algorithm using a Tesla K40 (2880 Cuda cores) on 290 different benchmark instances obtained from OR-Library, discrete location problems benchmark li...
Advances and applications of dynamic-angle spinning nuclear magnetic resonance
Energy Technology Data Exchange (ETDEWEB)
Baltisberger, Jay Harvey [Univ. of California, Berkeley, CA (United States)
1993-06-01
This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.
Median nerve fascicular anatomy as a basis for distal neural prostheses.
Planitzer, Uwe; Steinke, Hanno; Meixensberger, Jürgen; Bechmann, Ingo; Hammer, Niels; Winkler, Dirk
2014-05-01
Functional electrical stimulation (FES) serves as a possible therapy to restore missing motor functions of peripheral nerves by means of cuff electrodes. FES is established for improving lower limb function. Transferring this method to the upper extremity is complex, due to a lack of anatomical data on the physiological configuration of nerve fascicles. Our study's aim was to provide an anatomical basis for FES of the median nerve in the distal forearm and hand. We investigated 21 distal median nerves from 12 body donors. The peripheral fascicles were traced back by removing the external and interfascicular epineurium and then assigned to 4 quadrants. A distinct motor and sensory distribution was observed. The fascicles innervating the thenar eminence and the first lumbrical muscle originated from the nerves' radial parts in 82%. The fascicle supplying the second lumbrical muscle originated from the ulnar side in 78%. No macroscopically visible plexus formation was observed for the distal median nerve in the forearm. The findings on the distribution of the motor branches of the median nerve and the missing plexus formation may likely serve as an anatomical basis for FES of the distal forearm. However, due to the considerable variability of the motor branches, cuff electrodes will need to be adapted individually in FES. Taking into account the sensory distribution of the median nerve, FES may also possibly be applied in the treatment of regional pain syndromes. Copyright © 2013 Elsevier GmbH. All rights reserved.
Variant palmaris profundus enclosed by an unusual loop of the median nerve
CHOU, HSIU-CHU; JENG, HELLEN; KO, TSUI-LING; PAI, MAN-HUI; CHANG, CHIU-YUN; WU, CHING-HSIANG
2001-01-01
According to the usual description in most anatomy texts, the median nerve in the forearm passes between the 2 heads of pronator teres. It continues distally between flexor digitorum superficialis and profundus almost to the retinaculum. Muscular branches leave the nerve near the elbow and supply all superficial muscles of the anterior part of the forearm except flexor carpi ulnaris. Many variations of the median nerve in the forearm have been reported (Urban & Krosman, 1992). The palmaris profundus is also a rare anomaly of the forearm (Dyreby & Engber, 1982). It originates from the radial side of the common flexor tendon in the proximal forearm and inserts into the undersurface of the palmar aponeurosis. The origin of palmaris profundus may be close to the median nerve and its branches, and may be involved in compressive neuropathy of the anterior interosseous nerve. Its tendon crossing through the carpal canal has been implicated in the carpal tunnel syndrome (reviewed by Lahey & Aulicino, 1986). In some cases, palmaris profundus was found enclosed in a common fascial sheath with the median nerve (Stark, 1992; Sahinoglu et al. 1994). To indicate its close association with the median nerve, the palmaris profundus was also named ‘musculus comitans nervi mediani’ (Sahinoglu et al. 1994). This article reports an unusual loop of the median nerve encircling an anomalous palmaris profundus in the forearm, which, to the best of our knowledge, has not been previously described. PMID:11693311
International Nuclear Information System (INIS)
Liao, Chien-Tung; Lee, Jiunn-Yih; Lai, Chiu-Chun
2011-01-01
Research highlights: → In this study we report the synthesis and characterization of new ferroelectric liquid crystal material. → We examined the influence of the addition of a trisiloxane end-group on one side-chain of an achiral alkyl chain on the phase transition. → Finally, the properties of the chiral smectic C (SmC*) phase were measured for target compounds. - Abstract: This paper presents a study of the ferroelectric behavior in low molar mass organosiloxane liquid crystal materials. A few novel series of compounds with a large tilt angle were synthesized, and the mesophases exhibited were compared. The mesophases under discussion were investigated by means of polarizing microscopy (POM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and electro-optical experiments. The influence of the molecular structure on the occurrence of the chiral smectic C (SmC*) phase was investigated. Finally, the electro-optical properties of the SmC* phase, such as tilt angle, dielectric permittivity and switching behavior were also measured. As a consequence, the correlation between the electro-optical properties and chemical structures of these compounds was investigated.
Small angle neutron scattering study on star di-block copolymers
International Nuclear Information System (INIS)
Ertugrul, O.
2006-01-01
Determining structural properties, phase transitions and stability of polymer mixtures is very important to produce new materials with desired and interesting properties. Small Angle Neutron Scattering Technique (SANS) has been one of the most powerful and intensely used methods for the characterization of polymers for last decades, m this study, we use a model based on Gaussian Random Phase Approximation (RPA) to describe Star Di-block Copolymers (SDC) mixtures with homo-polymers. We could able to predict the miscibility and phase transitions of the various mixtures along with their structure factors, producing a thermodynamic picture of the system. Also the results suggest that scattering intensity will be dictated by the structure factor of the core or shell parts of star polymer only, which depends on the homo-polymer type of the mixture
Social Security: a financial appraisal for the median voter.
Galasso, V
Several explanations have been proposed for why voters continue to support unfunded social security systems. Browning (1975) suggests that the extremely large unfunded pension systems of most democracies depend on the existence of a voting majority composed of middle-aged and older people who fail to fully internalize the cost of financing the system. In fact, when voting, economically rational workers consider only their current and future contributions to the system and their expected pension benefits--not their past contributions, which they regard as sunk costs. If, for a majority of voters, the expected continuation return from social security exceeds the return from alternative assets, an unfunded social security system is politically sustainable. This article explores the validity of Browning's proposition by quantifying the returns that U.S. voters in presidential elections from 1964 to 1996 have obtained, or expect to obtain, from Social Security. Did "investments" in Social Security outperform alternative forms of investment, such as mutual funds or pension funds, for a majority of the voters? What can be expected for the future? The U.S. Social Security system redistributes income within age cohorts on the basis of sex, income, and marital status. To account for some of these features, the median voter is represented by a family unit whose members--a husband who accounts for 70 percent of household earnings and a wife who accounts for 30 percent--make joint economic and voting decisions. Thus, retirement and survival benefits paid out to the spouse of an insured worker can be included in the calculation of Social Security returns. Interval estimates of voters' family incomes from the U.S. Census Bureau were used to obtain the median voter's household earnings. The median voter's age is derived from the ages of those who voted in presidential elections, not from the ages of the entire electorate. The median voter's contributions to Social Security are the
Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang
2017-07-01
Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.
Detection of structural defects in lecithin membranes by the small-angle neutron scattering method
International Nuclear Information System (INIS)
Bezzabotnov, V.Yu.; Gordelij, V.I.; Ostanevich, Yu.M.; Yaguzhinskij, L.S.
1989-01-01
Irregularities interpreted as interdomain defects have been detected in model lipid membranes of dipalmitoil lecithin in liquid L α -phase by the method of small-angle scattering (lateral diffraction). The dimensions and concentrations of the defects were about those supposed within the dynamic cluster model of bilayer (Ivkov, 1984). No irregularities were detected in the solid Lβ ' -phase (the diffusion scattering intensity was at least ten times less)
Tethered Nanoparticle–Polymer Composites: Phase Stability and Curvature
Srivastava, Samanvaya; Agarwal, Praveen; Archer, Lynden A.
2012-01-01
different small-angle X-ray scattering signatures in comparison to phase-separated composites comprised of bare or sparsely grafted nanoparticles. A general diagram for the dispersion state and phase stability of polymer tethered nanoparticle-polymer
The Median Solution of the Newsvendor Problem and Some Observations
Directory of Open Access Journals (Sweden)
Sinha Pritibhushan
2015-09-01
Full Text Available We consider the median solution of the Newsvendor Problem. Some properties of such a solution are shown through a theoretical analysis and a numerical experiment. Sometimes, though not often, median solution may be better than solutions maximizing expected profit, or maximizing minimum possible, over distribution with the same average and standard deviation, expected profit, according to some criteria. We discuss the practical suitability of the objective function set and the solution derived, for the Newsvendor Problem, and other such random optimization problems.
Small angle neutron scattering and small angle X-ray scattering ...
Indian Academy of Sciences (India)
Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...
Small-angle and surface scattering from porous and fractal materials.
Energy Technology Data Exchange (ETDEWEB)
Sinha, S. K.
1998-09-18
We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.
Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M
2017-10-03
Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. 13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4×2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α≤0.05a priori. At all cutting angles, males showed greater knee flexion angles than females (pcutting angles with no differences in the amount of knee flexion -42.53°±8.95°, females decreased their knee flexion angle from -40.6°±7.2° when cutting at 45° to -36.81°±9.10° when cutting at 90°, 135° and 180° (pcutting towards sharper angles (pcutting angles and then stabilized compared to the 45° cutting angle (pcutting to sharper angles (pcutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Myofibroma in the Palm Presenting with Median Nerve Compression Symptoms
Directory of Open Access Journals (Sweden)
Heidi Sarkozy, PA-C, BS
2014-08-01
Full Text Available Summary: A myofibroma is a benign proliferation of myofibroblasts in the connective tissue. Solitary myofibromas are a rare finding especially in an adult. We report a case of a 23-year-old man presenting with an enlarging mass over his right palm. The patient is an active weight lifter. He reported numbness and tingling in the median nerve distribution. Nerve conduction studies and magnetic resonance imaging scans suggested a tumor involving or compressing the median nerve. The final diagnosis of myofibroma was made only after the histopathological diagnosis.
Ranking Exponential Trapezoidal Fuzzy Numbers by Median Value
Directory of Open Access Journals (Sweden)
S. Rezvani
2013-12-01
Full Text Available In this paper, we want represented a method for ranking of two exponential trapezoidal fuzzy numbers. A median value is proposed for the ranking of exponential trapezoidal fuzzy numbers. For the validation the results of the proposed approach are compared with different existing approaches.
Bayesian median regression for temporal gene expression data
Yu, Keming; Vinciotti, Veronica; Liu, Xiaohui; 't Hoen, Peter A. C.
2007-09-01
Most of the existing methods for the identification of biologically interesting genes in a temporal expression profiling dataset do not fully exploit the temporal ordering in the dataset and are based on normality assumptions for the gene expression. In this paper, we introduce a Bayesian median regression model to detect genes whose temporal profile is significantly different across a number of biological conditions. The regression model is defined by a polynomial function where both time and condition effects as well as interactions between the two are included. MCMC-based inference returns the posterior distribution of the polynomial coefficients. From this a simple Bayes factor test is proposed to test for significance. The estimation of the median rather than the mean, and within a Bayesian framework, increases the robustness of the method compared to a Hotelling T2-test previously suggested. This is shown on simulated data and on muscular dystrophy gene expression data.
Small-angle x-ray scattering from the early growth stages of zeolite A
International Nuclear Information System (INIS)
Singh, P.; White, J.
1999-01-01
Full text: The work presented here with the use of SAXS (Small-Angle X-ray Scattering) is in attempt to identify a different paradigm to the organic template induced crystallization of zeolites, in particular zeolite 'A'. The reactions have been followed by small angle X-ray scattering from the time of first mixing of the constituents until the final separation of zeolite A crystals. The processes happening during the growth are expected to follow successive transformation of intermediate metastable phases until the formation of thermodynamically most stable phase and scattering signatures from these developments may be useful for extracting interesting information about the processes in situ. The scattering functions from a synthesis system of zeolite 'A' at the initial and final stage of reaction are presented.The different growth processes of zeolite 'A' from different silicate and aluminium sources are found. The differences are attributed to different rate limiting steps in the syntheses
Ambiguity Resolution for Phase-Based 3-D Source Localization under Fixed Uniform Circular Array.
Chen, Xin; Liu, Zhen; Wei, Xizhang
2017-05-11
Under fixed uniform circular array (UCA), 3-D parameter estimation of a source whose half-wavelength is smaller than the array aperture would suffer from a serious phase ambiguity problem, which also appears in a recently proposed phase-based algorithm. In this paper, by using the centro-symmetry of UCA with an even number of sensors, the source's angles and range can be decoupled and a novel algorithm named subarray grouping and ambiguity searching (SGAS) is addressed to resolve angle ambiguity. In the SGAS algorithm, each subarray formed by two couples of centro-symmetry sensors can obtain a batch of results under different ambiguities, and by searching the nearest value among subarrays, which is always corresponding to correct ambiguity, rough angle estimation with no ambiguity is realized. Then, the unambiguous angles are employed to resolve phase ambiguity in a phase-based 3-D parameter estimation algorithm, and the source's range, as well as more precise angles, can be achieved. Moreover, to improve the practical performance of SGAS, the optimal structure of subarrays and subarray selection criteria are further investigated. Simulation results demonstrate the satisfying performance of the proposed method in 3-D source localization.
Intraneural hemangioma of the median nerve: A case report
Directory of Open Access Journals (Sweden)
Sevinç Teoman
2008-02-01
Full Text Available Abstract Hemangiomas of the median nerve are very rare and, so far, only ten cases of intraneural hemangioma of this nerve have been reported in the literature. We present a case of 14-year-old girl who had a soft tissue mass in the region of the left wrist with signs and symptoms of carpal tunnel syndrome. Total removal of the mass was achieved using microsurgical epineural and interfasicular dissection. The symptoms were relieved completely, after this procedure, without any neurologic deficit. On follow-up two years later, no recurrence was observed. Whenever a child or young adult patient presents with CTS the possibility of a hemangioma involving the median nerve should be kept in mind in the differential diagnosis.
Lee, Pei-Jung; Liu, Catherine Jui-Ling.; Wojciechowski, Robert; Bailey-Wilson, Joan E.; Cheng, Ching-Yu
2010-01-01
Purpose To assess the correlations between retinal nerve fiber layer (RNFL) thickness measured with scanning laser polarimetry (SLP) and visual field (VF) sensitivity in primary open angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). Design Prospective, comparative, observational cases series Methods Fifty patients with POAG and 56 with PACG were examined using SLP with variable corneal compensation (GDx VCC) and Humphrey VF analyzer between August 2005 and July 2006 at Taipei Veterans General Hospital. Correlations between RNFL thickness and VF sensitivity, expressed as mean sensitivity (MS) in both decibel (dB) and 1/Lambert (L) scales, were estimated by Spearman's rank correlation coefficient (rs) and multivariate median regression models (pseudo R2). The correlations were determined globally and for six RNFL sectors and their corresponding VF regions. Results The correlation between RNFL thickness and MS (in dB) was weaker in the PACG group (rs = 0.38, P = 0.004, pseudo R2 = 0.17) than in the POAG group (rs = 0.51, P <0.001, pseudo R2 = 0.31), but the difference in the magnitude of correlation was not significant (P = 0.42).With Bonferroni correction, the structure-function correlation was significant in the superotemporal (rs = 0.62), superonasal (rs = 0.56), inferonasal (rs = 0.53), and inferotemporal (rs = 0.50) sectors in the POAG group (all P <0.001), while it was significant only in the superotemporal (rs = 0.53) and inferotemporal (rs = 0.48) sectors in the PACG group (both P <0.001). The results were similar when MS was expressed as 1/L scale. Conclusions Both POAG and PACG eyes had moderate structure-function correlations using SLP. Compared to eyes with POAG, fewer RNFL sectors have significant structure-function correlations in eyes with PACG. PMID:20202618
Lepton mixing predictions including Majorana phases from Δ(6n2 flavour symmetry and generalised CP
Directory of Open Access Journals (Sweden)
Stephen F. King
2014-09-01
Full Text Available Generalised CP transformations are the only known framework which allows to predict Majorana phases in a flavour model purely from symmetry. For the first time generalised CP transformations are investigated for an infinite series of finite groups, Δ(6n2=(Zn×Zn⋊S3. In direct models the mixing angles and Dirac CP phase are solely predicted from symmetry. The Δ(6n2 flavour symmetry provides many examples of viable predictions for mixing angles. For all groups the mixing matrix has a trimaximal middle column and the Dirac CP phase is 0 or π. The Majorana phases are predicted from residual flavour and CP symmetries where α21 can take several discrete values for each n and the Majorana phase α31 is a multiple of π. We discuss constraints on the groups and CP transformations from measurements of the neutrino mixing angles and from neutrinoless double-beta decay and find that predictions for mixing angles and all phases are accessible to experiments in the near future.
Lepton mixing predictions including Majorana phases from Δ(6n2) flavour symmetry and generalised CP
International Nuclear Information System (INIS)
King, Stephen F.; Neder, Thomas
2014-01-01
Generalised CP transformations are the only known framework which allows to predict Majorana phases in a flavour model purely from symmetry. For the first time generalised CP transformations are investigated for an infinite series of finite groups, Δ(6n 2 )=(Z n ×Z n )⋊S 3 . In direct models the mixing angles and Dirac CP phase are solely predicted from symmetry. The Δ(6n 2 ) flavour symmetry provides many examples of viable predictions for mixing angles. For all groups the mixing matrix has a trimaximal middle column and the Dirac CP phase is 0 or π. The Majorana phases are predicted from residual flavour and CP symmetries where α 21 can take several discrete values for each n and the Majorana phase α 31 is a multiple of π. We discuss constraints on the groups and CP transformations from measurements of the neutrino mixing angles and from neutrinoless double-beta decay and find that predictions for mixing angles and all phases are accessible to experiments in the near future
Brain malformation in single median maxillary central incisor
DEFF Research Database (Denmark)
Kjaer, I; Wagner, Aa; Thomsen, L L
2009-01-01
Clinical and radiographic examinations and MR scan of a 12-year-old girl with SMMCI (single median maxillary central incisor) showed impaired growth and a midline defect involving the central incisor, cranium and the midline structures in the brain, falx cerebri and pituitary gland. She had a sev...
A single-layer wide-angle negative-index metamaterial at visible frequencies.
Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A
2010-05-01
Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.
Survival and Growth of Cottonwood Clones After Angle Planting and Base Angle Treatments
W.K. Randall; Harvey E. Kennedy
1976-01-01
Presently, commercial cottonwood plantations in the lower Mississippi Valley are established using vertically planted, unrooted cuttings with a flat (90Â°) base. Neither survival nor first-year growth of a group of six Stoneville clones was improved by angle planting or cutting base angles diagonally. For one clone, survival was significantly better when base angle was...
Van der Bracht, H; Verhelst, L; Stuyts, B; Page, B; Bellemans, J; Verdonk, P
2014-05-01
To investigate the consequences of differences in drill-guide angle and tibial tunnel diameter on the amount of tibial anatomical anterior cruciate ligament (ACL) footprint coverage and the risk of overhang of the tibial tunnel aperture over the edges of the native tibial ACL footprint. Twenty fresh-frozen adult human knee specimens with a median age of 46 years were used for this study. Digital templates mimicking the ellipsoid aperture of tibial tunnels with a different drill-guide angle and a different diameter were designed. The centres of these templates were positioned over the geometric centre of the tibial ACL footprint. The amount of tibial ACL footprint coverage and overhang was calculated. Risk factors for overhang were determined. Footprint coverage and the risk of overhang were also compared between a lateral tibial tunnel and a classic antero-medial tibial tunnel. A larger tibial tunnel diameter and a smaller drill-guide angle both will create significant more footprint coverage and overhang. In 45% of the knees, an overhang was created with a 10-mm diameter tibial tunnel with drill-guide angle 45°. Furthermore, a lateral tibial tunnel was found not to be at increased risk of overhang. A larger tibial tunnel diameter and a smaller drill-guide angle both will increase the amount of footprint coverage. Inversely, larger tibial tunnel diameters and smaller drill-guide angles will increase the risk of overhang of the tibial tunnel aperture over the edges of the native tibial ACL footprint. A lateral tibial tunnel does not increase the risk of overhang.
Phase Image Analysis in Conduction Disturbance Patients
International Nuclear Information System (INIS)
Kwark, Byeng Su; Choi, Si Wan; Kang, Seung Sik; Park, Ki Nam; Lee, Kang Wook; Jeon, Eun Seok; Park, Chong Hun
1994-01-01
It is known that the normal His-Purkinje system provides for nearly synchronous activation of right (RV) and left (LV) ventricles. When His-Purkinje conduction is abnormal, the resulting sequence of ventricular contraction must be correspondingly abnormal. These abnormal mechanical consequences were difficult to demonstrate because of the complexity and the rapidity of its events. To determine the relationship of the phase changes and the abnormalities of ventricular conduction, we performed phase image analysis of Tc-RBC gated blood pool scintigrams in patients with intraventricular conduction disturbances (24 complete left bundle branch block (C-LBBB), 15 complete right bundle branch block (C-RBBB), 13 Wolff-Parkinson-White syndrome (WPW), 10 controls). The results were as follows; 1) The ejection fraction (EF), peak ejection rate (PER), and peak filling rate (PFR) of LV in gated blood pool scintigraphy (GBPS) were significantly lower in patients with C-LBBB than in controls (44.4 ± 13.9% vs 69.9 ± 4.2%, 2.48 ± 0.98 vs 3.51 ± 0,62, 1.76 ± 0.71 vs 3.38 ± 0.92, respectively, p<0.05). 2) In the phase angle analysis of LV, Standard deviation (SD), width of half maximum of phase angle (FWHM), and range of phase angle were significantly increased in patients with C-LBBB than in controls (20.6 + 18.1 vs S.6 + I.8, 22. 5 + 9.2 vs 16.0 + 3.9, 95.7 + 31.7 vs 51.3 + 5.4, respectively, p<0.05). 3) There was no significant difference in EF, PER, PFR between patients with the WolffParkinson-White syndrome and controls. 4) Standard deviation and range of phase angle were significantly higher in patients with WPW syndrome than in controls (10.6 + 2.6 vs 8.6 + 1.8, p<0.05, 69.8 + 11.7 vs 51.3 + 5 4, p<0.001, respectively), however, there was no difference between the two groups in full width of half maximum. 5) Phase image analysis revealed relatively uniform phase across the both ventriles in patients with normal conduction, but markedly delayed phase in the left ventricle
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
Michelson interferometer based spatial phase shift shearography.
Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu
2013-06-10
This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.
Multiple ordered phases in a block copolymer melt
DEFF Research Database (Denmark)
Almdal, K.; Koppi, K.A.; Bates, F.S.
1992-01-01
A poly(ethylenepropylene)-poly(ethylethylene) (PEP-PEE) diblock copolymer containing 65% by volume PEP was investigated using small-angle neutron scattering (SANS) and rheological measurements. Four distinct phases have been identified as a function of temperature: three ordered phases at low...
National Research Council Canada - National Science Library
Hyatt, Andrew W
2006-01-01
...) waveforms in a Wide-Angle Synthetic Aperture Radar (WA-SAR) scenario. RSF waveforms have been demonstrated to have desirable properties which allow for cancelling of Doppler aliased scatterers in WA-SAR images...
Cardiac motion correction based on partial angle reconstructed images in x-ray CT
International Nuclear Information System (INIS)
Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom
2015-01-01
Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of
Cardiac motion correction based on partial angle reconstructed images in x-ray CT
Energy Technology Data Exchange (ETDEWEB)
Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)
2015-05-15
Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of
Ozorio, Gislaine Aparecida; Barão, Katia; Forones, Nora Manoukian
2017-07-01
The aim of this study was to correlate patients with gastrointestinal cancer, classified according to different stages of cancer cachexia (SCC) as proposed by Fearon, with nutritional assessment tools such as PG-SGA, phase angle (PA), and handgrip strength. One hundred one patients with a mean age of 61.8 ± 12.8 yr, with 58.4% being men were included. 32.6% were malnourished according to the body mass index (BMI). A severe or moderate malnutrition had been diagnosed in 63.3% when assessed using the PG-SGA, 60.4% had decreased handgrip strength, and 57.4% had lower grades of PA. Among the patients in the study, 26% did not have cachexia, 11% had precachexia, 56% cachexia, and 8% refractory cachexia. The PG-SGA, PA, and handgrip strength were associated with cachexia (P ≤ 0.001). An increased risk of death was found in patients with cachexia [RR: 9.1; confidence interval (CI) 95%: 0.1-90.2, P = 0.039], refractory cachexia (RR: 69.4, CI 95%: 4.5-1073.8, P = 0.002), and increased serum C-reactive protein (CRP) levels (P cachexia or refractory cachexia in the first nutritional assessment. Nutritional risk, as determined by PG-SGA, was correlated with PA and handgrip strength. High CRP levels, cachexia, and refractory cachexia were prognostic factors for cancer patients.
Requejo, Philip Santos; Mulroy, Sara J; Ruparel, Puja; Hatchett, Patricia E; Haubert, Lisa Lighthall; Eberly, Valerie J; Gronley, JoAnne K
2015-01-01
Shoulder loading during manual wheelchair propulsion (WCP) contributes to the development of shoulder pain in individuals with spinal cord injury (SCI). To use regression analysis to investigate the relationships between the hand contact angle (location of the hand on the pushrim at initial contact and release during the push phase of the WCP cycle) with propulsion characteristics, pushrim forces, and shoulder kinetics during WCP in individuals with paraplegia. Biomechanical data were collected from 222 individuals (198 men and 24 women) with paraplegia from SCI during WCP on a stationary ergometer at a self-selected speed. The average age of participants was 34.7 years (±9.3), mean time since SCI was 9.3 years (±6.1), and average body weight was 74.4 kg (±15.9). The majority (n = 127; 56%) of participants had lower level paraplegia (T8 to L5) and 95 (42%) had high paraplegia (T2 to T7). Increased push arc (mean = 75.3°) was associated with greater velocity (R = 0.384, P contact angle and hand release angles were equally associated with cycle distance and cadence, whereas a more anterior release angle was associated with greater velocity (R = 0.372, P contact angle was associated with greater posterior shoulder net joint force (R = 0.229, P = .001) and greater flexor net joint moment (R = 0.204, P = .002), whereas a more anterior hand release angle was significantly associated with increased vertical (R = 0.270, P contact and hand release must be considered in WCP training. It is recommended that participants should reach back to initiate contact with the pushrim to maximize push arc but avoid a more anterior hand position at release, because this could increase shoulder load during the push phase of WCP.
Influence of increasing knee flexion angle on knee-ankle varus stress during single-leg jump landing
Directory of Open Access Journals (Sweden)
Mariam A. Ameer, PhD
2017-12-01
Full Text Available Objectives: The primary aim of this study was to identify the relationship between the peak knee flexion angle and knee-ankle varus stress in the landing phase of the single-leg jump during running. Methods: Fifteen male handball players from the first Saudi Arabian handball team were incorporated in this study. Each player performed a single-leg jump-land after running a fixed distance of 450Â cm. The data were measured using a 3D motion analysis system. The maximum knee flexion angle, knee varus angle, centre of pressure pathway in the medio-lateral direction, and ankle varus moment were measured. Results: The Pearson Product Moment Correlation showed that a greater knee flexion angle was related to a greater lateral displacement of the centre of pressure (rÂ =Â 0.794, PÂ =Â 0.000, a greater ankle varus moment (rÂ =Â 0.707, PÂ =Â 0.003, and a greater knee varus angle (rÂ =Â 0.753, PÂ =Â 0.001. In addition, the greater ankle varus moment was related to the greater lateral displacement of the centre of pressure (rÂ =Â 0.734, PÂ =Â 0.002. Conclusions: These findings may help physical therapists and conditioning professionals to understand the impact of increasing knee flexion angle on the lower limb joints. Such findings may help to develop training protocols for enhancing the lateral body reaction during the landing phase of the single-leg jump, which may protect the knee and ankle joints from excessive varus stresses. Keywords: 3D motion analysis, Ankle kinetic, Centre of pressure pathway, Handball playing, Knee kinematic, Single-leg jump
The double Brewster angle effect
Thirion-Lefevre, Laetitia; Guinvarc'h, Régis
2018-01-01
The Double Brewster angle effect (DBE) is an extension of the Brewster angle to double reflection on two orthogonal dielectric surfaces. It results from the combination of two pseudo-Brewster angles occurring in complementary incidence angles domains. It can be observed for a large range of incidence angles provided that double bounces mechanism is present. As a consequence of this effect, we show that the reflection coefficient at VV polarization can be at least 10 dB lower than the reflection coefficient at HH polarization over a wide range of incidence angle - typically from 20 to 70∘. It is experimentally demonstrated using a Synthetic Aperture Radar (SAR) image that this effect can be seen on buildings and forests. For large buildings, the difference can reach more than 20 dB. xml:lang="fr"
Zhang, Neng-Li; Chao, David F.
2001-01-01
A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.
PERBANDINGAN TRANSFORMASI BOX-COX DAN REGRESI KUANTIL MEDIAN DALAM MENGATASI HETEROSKEDASTISITAS
Directory of Open Access Journals (Sweden)
NI WAYAN YUNI CAHYANI
2015-01-01
Full Text Available Ordinary least square (OLS is a method that can be used to estimate the parameter in linear regression analysis. There are some assumption which should be satisfied on OLS, one of this assumption is homoscedasticity, that is the variance of error is constant. If variance of the error is unequal that so-called heteroscedasticity. The presence heteroscedasticity can cause estimation with OLS becomes inefficient. Therefore, heteroscedasticity shall be overcome. There are some method that can used to overcome heteroscedasticity, two among those are Box-Cox power transformation and median quantile regression. This research compared Box-Cox power transformation and median quantile regression to overcome heteroscedasticity. Applied Box-Cox power transformation on OLS result ????2point are greater, smaller RMSE point and confidencen interval more narrow, therefore can be concluded that applied of Box-Cox power transformation on OLS better of median quantile regression to overcome heteroscedasticity.
PERBANDINGAN TRANSFORMASI BOX-COX DAN REGRESI KUANTIL MEDIAN DALAM MENGATASI HETEROSKEDASTISITAS
Directory of Open Access Journals (Sweden)
NI WAYAN YUNI CAHYANI
2015-03-01
Full Text Available Ordinary least square (OLS is a method that can be used to estimate the parameter in linear regression analysis. There are some assumption which should be satisfied on OLS, one of this assumption is homoscedasticity, that is the variance of error is constant. If variance of the error is unequal that so-called heteroscedasticity. The presence heteroscedasticity can cause estimation with OLS becomes inefficient. Therefore, heteroscedasticity shall be overcome. There are some method that can used to overcome heteroscedasticity, two among those are Box-Cox power transformation and median quantile regression. This research compared Box-Cox power transformation and median quantile regression to overcome heteroscedasticity. Applied Box-Cox power transformation on OLS result ????2point are greater, smaller RMSE point and confidencen interval more narrow, therefore can be concluded that applied of Box-Cox power transformation on OLS better of median quantile regression to overcome heteroscedasticity.
Wigner functions for angle and orbital angular momentum. Operators and dynamics
Energy Technology Data Exchange (ETDEWEB)
Kastrup, Hans A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2017-02-15
Recently a paper on the construction of consistent Wigner functions for cylindrical phase spaces S{sup 1} x R, i.e. for the canonical pair angle and orbital angular momentum, was presented, main properties of those functions derived, discussed and their usefulness illustrated by examples. The present paper is a continuation which compares properties of the new Wigner functions for cylindrical phase spaces with those of the well-known Wigner functions on planar ones in more detail. Furthermore, the mutual (Weyl) correspondence between HIlbert space operators and their phase space functions is discussed. The * product formalism is shown to be completely implementable. In addition basic dynamical laws for Wigner and Moyal functions are derived as generalized Liouville and energy equations. They are very similar to those of the planar case, but also show characteristic differences.
Wigner functions for angle and orbital angular momentum. Operators and dynamics
International Nuclear Information System (INIS)
Kastrup, Hans A.
2017-02-01
Recently a paper on the construction of consistent Wigner functions for cylindrical phase spaces S"1 x R, i.e. for the canonical pair angle and orbital angular momentum, was presented, main properties of those functions derived, discussed and their usefulness illustrated by examples. The present paper is a continuation which compares properties of the new Wigner functions for cylindrical phase spaces with those of the well-known Wigner functions on planar ones in more detail. Furthermore, the mutual (Weyl) correspondence between HIlbert space operators and their phase space functions is discussed. The * product formalism is shown to be completely implementable. In addition basic dynamical laws for Wigner and Moyal functions are derived as generalized Liouville and energy equations. They are very similar to those of the planar case, but also show characteristic differences.
Nasution, B. R.; Lubis, A. R.
2018-03-01
Chronic Kidney Disease (CKD) patients with regular hemodialysis have high rates of morbidity and mortality that may be related to the hemodynamic effects of rapid UFR and low PhA value. In this study, we investigated whether high UFR is associated with a low value of PhA thus indirectly affect the risk of morbidity and mortality. UFR and Bioelectrical Impedance Analysis (BIA) examination on 92 subjects were recorded shortly after HD and analyzed by using Pearson correlation test. Multivariate analysis was also conducted to identify several factors that can affect the value of Phase angle. The number of HD regular CKD patients with PhA<4 based on the division of the UFR (cc/kg/h) <10, 10-13, ≥ 13, respectively were3, 10 and 6, whereas patients with ≥ 4 PhA <10, 10-13, ≥ 13respectively were 60, 11, and 2. The results showed a significant relationship between UFR with PhA. In CKD patients with regular HD, UFR has aninverse relationship with the value of PhA. After multivariate analysis, the UFR and the etiology of HD are still significantly affect the value of PhA. UFR optimal value in patients with CKD with regular HD is <10 cc/kg/h.
The Spectral Sharpness Angle of Gamma-ray Bursts
Directory of Open Access Journals (Sweden)
Hendrik J. van Eerten
2016-06-01
Full Text Available We extend the results of Yu et al. (2015b of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23 -18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.
Directory of Open Access Journals (Sweden)
Jacky Lee
2013-02-01
Full Text Available AIM:To investigate the trabecular-iris angle with ultrasound biomicroscopy (UBM post cataract extraction after an acute attack of phacomorphic angle closure.METHODS: This prospective study involved 10 cases of phacomorphic angle closure that underwent cataract extraction and intraocular lens insertion after intraocular pressure (IOP lowering. Apart from visual acuity and IOP, the trabecular-iris angle was measured by gonioscopy and UBM at 3 months post attack.RESULTS: In 10 consecutive cases of acute phacomorphic angle closure from December 2009 to December 2010, gonioscopic findings showed peripheral anterior synechiae (PAS ≤ 90° in 30% of phacomorphic patients and a mean Shaffer grading of (3.1±1.0. UBM showed a mean angle of (37.1°±4.5° in the phacomorphic eye with the temporal quadrant being the most opened and (37.1°±8.0° in the contralateral uninvolved eye. The mean time from consultation to cataract extraction was (1.4±0.7 days and the mean total duration of phacomorphic angle closure was (3.6±2.8 days but there was no correlation to the degree of angle closure on UBM (Spearman correlation P=0.7. The presenting mean IOP was (50.5±7.4 mmHg and the mean IOP at 3 months was (10.5±3.4 mmHg but there were no correlations with the degree of angle closure (Spearman correlations P=0.9.CONCLUSION:An open trabecular-iris angle and normal IOP can be achieved after an acute attack of phacomorphic angle closure if cataract extraction is performed within 1 day - 2 days after IOP control. Gonioscopic findings were in agreement with UBM, which provided a more specific and object angle measurement. The superior angle is relatively more narrowed compared to the other quadrants. All contralateral eyes in this series had open angles.
Phase characteristics of earthquake accelerogram and its application
International Nuclear Information System (INIS)
Ohsaki, Y.; Iwasaki, R.; Ohkawa, I.; Masao, T.
1979-01-01
As the input earthquake motion for seismic design of nuclear power plant structures and equipments, an artificial time history compatible with smoothed design response spectrum is frequently used. This paper deals with a wave generation technique based on phase characteristics in earthquake accelerograms as an alternate of envelope time function. The concept of 'phase differences' distribution' is defined to represent phase characteristics of earthquake motion. The procedure proposed in this paper consists of following steps; (1) Specify a design response spectrum and derive a corresponding initial modal amplitude. (2) Determine a phase differences' distribution corresponding to an envelope function, the shape of which is dependent on magnitude and epicentral distance of an earthquake. (3) Derive the phase angles at all modal frequencies from the phase differences' distribution. (4) Generate a time history by inverse Fourier transeform on the basis of the amplitudes and the phase angles thus determined. (5) Calculate the response spectrum. (6) Compare the specified and calculated response spectra, and correct the amplitude at each frequency so that the response spectrum will be consistent with the specified. (7) Repeat the steps 4 through 6, until the specified and calculated response spectra become consistent with sufficient accuracy. (orig.)
Arai, T.; Matsunaga, T.
2017-12-01
GOSAT and the next generation GOSAT-2 satellites estimate the concentration of greenhouse gasses, and distribution of aerosol and cloud to observe solar light reflection and radiation from surface and atmosphere of the Earth. Precise information of the surface and the bidirectional reflectance distribution function (BRDF) are required for the estimation because the surface reflectance of solar light varies with the observation geometry and the surface condition. The purpose of this study is to search an appropriate BRDF model of the GOSAT calibration site (Railroad Valley playa). In 2017, JAXA, NIES, and NASA/OCO-2 teams collaboratively performed 9th vicarious experiments by the simultaneous observation with GOSAT, OCO-2, and ground-based equipment (Kuze et al., 2014) at the Railroad Valley from June 25 to 30. We performed the BRDF measurement to observe solar light reflection by varying with observed angles using a spectroradiometer (FieldSpec4, ASD Inc.) mounted on a one-axis goniometer. The surface sand was shifted to several sizes of grain (75, 125, 250, 500, and 1000 μm), which was measured for the limited area of 5mm diameter with a collimating lens (74-UV, OceanOptics). The BRDF parameters for the observed reflectance were determined by the least squares fitting with the free parameters of a single scattering albedo and an asymmetric factor (Hapke, 2012) for the ultraviolet to near infrared wavelength bands of GOSAT. The resulting value of the single scattering albedo increased with decreasing the grain size of the sands. The observed reflectance of the fine grain sands (below 250 μm) is not varied with observed phase angles (solar incident light - surface sand - detector) as a Lambertian reflectance, but the spectra of coarse grain sands (above 500 μm) are varied with the observation angles. Therefore, a priori information of the target surface such as grain size is required for the determination of the precise reflectance of the target.
Nuorten sosiaalisen median käyttö seurustelusuhteissa : "Onksiul snappii, kikkii tai whatsappii?"
Pöllänen, Kati
2016-01-01
Tässä opinnäytetyössä tutkittiin nuorten sosiaalisen median käyttöä seurustelusuhteissa. Seurustelusuhteella tarkoitetaan kahden toisistaan pitävän ihmisen romanttista suhdetta. Työssä tarkasteltiin keskinuorten ja myöhäisnuorten käyttämiä sosiaalisen median sovelluksia, käyttömääriä ja –tapoja. Lisäksi selvitettiin, millainen rooli sosiaalisella medialla on seurustelusuhteen eri vaiheissa. Työssä tutustuttiin nuorten sosiaalisen median käyttöön kenttätutkimuksella, jossa nu...
Simple map in action-angle coordinates
Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima
2008-07-01
A simple map [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)] is the simplest map that has the topology of divertor tokamaks [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. Here, action-angle coordinates, the safety factor, and the equilibrium generating function for the simple map are calculated analytically. The simple map in action-angle coordinates is derived from canonical transformations. This map cannot be integrated across the separatrix surface because of the singularity in the safety factor there. The stochastic broadening of the ideal separatrix surface in action-angle representation is calculated by adding a perturbation to the simple map equilibrium generating function. This perturbation represents the spatial noise and field errors typical of the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] tokamak. The stationary Fourier modes of the perturbation have poloidal and toroidal mode numbers (m,n,)={(3,1),(4,1),(6,2),(7,2),(8,2),(9,3),(10,3),(11,3)} with amplitude δ =0.8×10-5. Near the X-point, about 0.12% of toroidal magnetic flux inside the separatrix, and about 0.06% of the poloidal flux inside the separatrix is lost. When the distance from the O-point to the X-point is 1m, the width of stochastic layer near the X-point is about 1.4cm. The average value of the action on the last good surface is 0.19072 compared to the action value of 3/5π on the separatrix. The average width of stochastic layer in action coordinate is 2.7×10-4, while the average area of the stochastic layer in action-angle phase space is 1.69017×10-3. On average, about 0.14% of action or toroidal flux inside the ideal separatrix is lost due to broadening. Roughly five times more toroidal flux is lost in the simple map than in DIII-D for the same perturbation [A. Punjabi, H. Ali, A. Boozer, and T. Evans, Bull. Amer. Phys. Soc. 52, 124 (2007)].
Simple map in action-angle coordinates
International Nuclear Information System (INIS)
Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima
2008-01-01
A simple map [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)] is the simplest map that has the topology of divertor tokamaks [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. Here, action-angle coordinates, the safety factor, and the equilibrium generating function for the simple map are calculated analytically. The simple map in action-angle coordinates is derived from canonical transformations. This map cannot be integrated across the separatrix surface because of the singularity in the safety factor there. The stochastic broadening of the ideal separatrix surface in action-angle representation is calculated by adding a perturbation to the simple map equilibrium generating function. This perturbation represents the spatial noise and field errors typical of the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] tokamak. The stationary Fourier modes of the perturbation have poloidal and toroidal mode numbers (m,n,)=((3,1),(4,1),(6,2),(7,2),(8,2),(9,3),(10,3),(11,3)) with amplitude δ=0.8x10 -5 . Near the X-point, about 0.12% of toroidal magnetic flux inside the separatrix, and about 0.06% of the poloidal flux inside the separatrix is lost. When the distance from the O-point to the X-point is 1 m, the width of stochastic layer near the X-point is about 1.4 cm. The average value of the action on the last good surface is 0.19072 compared to the action value of 3/5π on the separatrix. The average width of stochastic layer in action coordinate is 2.7x10 -4 , while the average area of the stochastic layer in action-angle phase space is 1.69017x10 -3 . On average, about 0.14% of action or toroidal flux inside the ideal separatrix is lost due to broadening. Roughly five times more toroidal flux is lost in the simple map than in DIII-D for the same perturbation [A. Punjabi, H. Ali, A. Boozer, and T. Evans, Bull. Amer. Phys. Soc. 52, 124 (2007)].
Directory of Open Access Journals (Sweden)
Kun Zeng
2013-08-01
Full Text Available AIM: To evaluate the features and clinical outcomes of cataract extraction by phacoemulsification with intraocular lens implantation in primary angle-closure suspect(PACS, primary angle-closure(PACand primary angle-closure glaucoma(PACGwith cataract.METHODS:Phacoemulsification with intraocular lens implantation was performed on 86 cases(86 eyesdiagnosed as PACS, PAC and PACG co-existing cataract from January to December 2012. All cases were followed up for 3 months to 1 year. Pre-operative and post-operative visual acuity, intraocular pressure(IOP, gonioscopy, ultrasound biomicroscopy(UBM, visual field and usage of anti-glaucomaous eye drops were recorded.RESULTS:Zonular dialysis existed in 19 eyes(22%. The post-operative visual acuity improved in 84 eyes(98%. The post-operative visual acuity was CONCLUSION: PACS, PAC and PACG co-existing zonular dialysis is common. Phacoemulsification with IOL implantation can reduce IOP, deepen anterior chamber and open angle.
DEFF Research Database (Denmark)
Kohno, Mitsutomo; Steinbrüchel, Daniel A
2012-01-01
We describe our technique of using median sternotomy to perform double lung transplantations with cardiopulmonary bypass. By sparing the respiratory muscles, median sternotomy is probably less invasive and preserves lung function. Furthermore, it causes less long-term discomfort than intercostal...
Small angle spectrometers: Summary
International Nuclear Information System (INIS)
Courant, E.; Foley, K.J.; Schlein, P.E.
1986-01-01
Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices
Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)
Alamdar, K.; Ansari, A. H.; Ghorbani, A.
2009-04-01
Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which
Perera, Shamira A; Quek, Desmond T; Baskaran, Mani; Tun, Tin A; Kumar, Rajesh S; Friedman, David S; Aung, Tin
2010-06-01
To evaluate EyeCam in detecting changes in angle configuration after laser peripheral iridotomy (LPI) in comparison to gonioscopy, the reference standard. Prospective comparative study. Twenty-four subjects (24 eyes) with primary angle-closure glaucoma (PACG) were recruited. Gonioscopy and EyeCam (Clarity Medical Systems) imaging of all 4 angle quadrants were performed, before and 2 weeks after LPI. Images were graded according to angle structures visible by an observer masked to clinical data or the status of LPI, and were performed in a random order. Angle closure in a quadrant was defined as the inability to visualize the posterior trabecular meshwork. We determined the number of quadrants with closed angles and the mean number of clock hours of angle closure before and after LPI in comparison to gonioscopy. Using EyeCam, all 24 eyes showed at least 1 quadrant of angle widening after LPI. The mean number of clock hours of angle closure decreased significantly, from 8.15 +/- 3.47 clock hours before LPI to 1.75 +/- 2.27 clock hours after LPI (P gonioscopy showed 1.0 +/- 1.41 (95% CI, 0.43-1.57) quadrants opening from closed to open after LPI compared to 2.0 +/- 1.28 (95% CI, 1.49-2.51, P = .009) quadrants with EyeCam. Intra-observer reproducibility of grading the extent of angle closure in clock hours in EyeCam images was moderate to good (intraclass correlation coefficient 0.831). EyeCam may be used to document changes in angle configuration after LPI in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.
Bot, A.; Gilbert, E.P.; Bouwman, W.G.; Sawalha, H.I.M.; Adel, den R.; Garamus, V.M.; Venema, P.; Linden, van der E.; Flöter, E.
2012-01-01
Small-angle neutron scattering (SANS) experiments have been performed on self-assembled tubules of sitosterol and oryzanol in triglyceride oils to investigate details of their structure. Alternative organic phases (deuterated and non-deuterated decane, limonene, castor oil and eugenol) were used to
Shape distortion and dimensional precision in tungsten heavy alloy liquid phase sintering
International Nuclear Information System (INIS)
Wuwen Yi; German, R.M.; Lu, P.K.
2001-01-01
Microstructure effects on densification and shape distortion in liquid phase sintering of tungsten heavy alloy were investigated. Microstructure parameters such as the solid volume fraction, dihedral angle, initial porosity, and pore size were varied to measure densification and distortion behavior during LPS using W-Ni-Cu alloys. Green compacts were formed using ethylene-bis-stearamide as a pore-forming agent with the amount of polymer controlling the initial porosity. Different initial pore sizes were generated by varying the polymer particle size. Dihedral angle was varied by changing the Ni:Cu ratio in the alloys. Finally, the solid volume fraction was adjusted via the tungsten content. Distortion was quantified using profiles determined with a coordinate measuring machine to calculate a distortion parameter. Sintering results showed that solid volume fraction and dihedral angle are the dominant factors on densification and distortion during liquid phase sintering. Distortion decreases with increasing solid volume fraction and dihedral angle, while initial porosity and pore size have no observable effect on distortion at nearly full densification. Various strategies emerge to improve distortion control in liquid phase sintering. (author)
TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI
International Nuclear Information System (INIS)
McClintock, B. H.; Norton, A. A.
2016-01-01
We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations
A case of fibrolipomatous hamartoma of the median nerve with macrodactyly
Directory of Open Access Journals (Sweden)
Sathish Arakeri
2012-07-01
Full Text Available Fibrolipomatous hamartoma of nerve is a tumor-like lipomatous process principally involving affecting young persons. The median nerve is most commonly affectedinvolved. The lesion is characterized by a soft slowly growing mass, surrounding and infiltrating major nerves and their branches. It may cause symptoms of compression neuropathy and is associated with macrodactyly in one third of cases. Here, we present a case of Fibrolipomatous hamartoma of nerve in the wrist of a young man arising from median nerve. Debulking of the tumour was performed.
Behavior of Tilted Angle Shear Connectors
Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.
2015-01-01
According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193
Behavior of Tilted Angle Shear Connectors.
Directory of Open Access Journals (Sweden)
Koosha Khorramian
Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.
Educational system, income inequality and growth: the median voter's decision
Directory of Open Access Journals (Sweden)
Joilson Dias
2005-03-01
Full Text Available I analyze a long run educational policy as a mechanism to close the income gap among low, median and high-income families. If the choice is made endogenous by the use of the median voter theorem, the results are as follow: i public education system guarantees income convergence, however the income growth rate of the median voter is smaller; ii the combination public and private (hybrid educational system allows faster income growth rate, but income inequality is almost the natural outcome. The ending result is that the combination public and private system will prevail, since the income growth rate of the median voter is higher in this system. This might explain the persistence and differences of income inequality among the economies.O objetivo deste artigo é analisar a utilização da política educacional no longo prazo como mecanismo para a redução da desigualdade de renda entre famílias de renda baixa, mediana e alta. Se a decisão sobre a política for endogeneizada, de acordo com o teorema do eleitor mediano, os resultados são os seguintes: i o sistema educacional público para todos, apesar de garantir convergência de renda, produz uma menor taxa de crescimento da renda do eleitor mediano; ii a combinação público-privado (sistema educacional híbrido permite uma maior taxa de crescimento da renda do eleitor mediano, no entanto a desigualdade de renda é inerente a este sistema. Como resultado final, o eleitor mediano irá escolher o sistema público-privado, pois o crescimento da sua renda é maior, o que pode explicar a persistência e as diferenças na desigualdade de renda das economias.
Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt
Energy Technology Data Exchange (ETDEWEB)
Jones, H.G., E-mail: helen.jones@npl.co.uk [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Day, A.P. [Aunt Daisy Scientific Ltd, Claremont House, High St, Lydney GL15 5DX (United Kingdom); Cox, D.C. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)
2016-10-15
A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beam exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.
Improvement of detection of stress corrosion cracks with ultrasonic phased array probes
International Nuclear Information System (INIS)
Wustenberg, H.; Mohrle, W.; Wegner, W.; Schenk, G.; Erhard, A.
1986-01-01
Probes with linear arrays can be used for the detection of stress corrosion cracks especially if the variability of the sound field is used to change the skewing angle of angle beam probes. The phased array concept can be used to produce a variable skewing angle or a variable angle of incidence depending on the orientation of the linear array on the wedge. This helps to adapt the direction of the ultrasonic beam to probable crack orientations. It has been demonstrated with artificial reflectors as well as with corrosion cracks, that the detection of misoriented cracks can be improved by this approach. The experiences gained during the investigations are encouraging the application of phased array probes for stress corrosion phenomena close to the heat effected zone of welds. Probes with variable skewing angles may find some interesting applications on welds in tubular structures e.g., at off shore constructions and on some difficult geometries within the primary circuit of nuclear power plants
International Nuclear Information System (INIS)
Alam, Todd M.
2004-01-01
Solid-state 13 C magic angle spinning (MAS) NMR spectroscopy has been used to quantify the different carbon species observed in synthetically produced nanodiamonds. Two different diamond-like carbon species were observed using 13 C MAS NMR, which have been attributed to a highly ordered crystalline diamond phase and a disordered crystalline diamond phase. The relative ratio of these different diamond phases was found to vary with the particle size of the nanodiamond materials
A Phase-Locked Loop Continuous Wave Sonic Anemometer-Thermometer
DEFF Research Database (Denmark)
Larsen, Søren Ejling; Weller, F. W.; Busings, J. A.
1979-01-01
A continuous wake sonic anemometer-thermometer has been developed for simultaneous measurements of vertical velocity and temperature. The phase angle fluctuations are detected by means of a monolithic integrated phase-locked loop, the latter feature providing for inexpensive and accurate...
International Nuclear Information System (INIS)
Machida, Mitsuo; Uchida, Hiroyuki; Ishibashi, Toku; Taniguchi, Hiroki; Komukae, Masaru; Osaka, Toshio; Koyano, Nobumitsu
2004-01-01
Crystal structure of deuterated glycinium phosphite was studied in the paraelectric (P) phase at 348 K and in the ferroelectric (F) phase at 223 K by means of the single crystal neutron diffraction. Deuteration rate is estimated to be 0.939 by the least-squares refinement. In the P phase, quasi-one-dimensional hydrogen bond chains are built by mutually linking the DPO 3 2- anions through two different types of hydrogen bonds with the bond angles of 179.2 and 171.6deg. Two independent deuterons within the hydrogen bonds forming the chains are disordered over two sites separated by 0.545 and 0.539A. In the F phase, they order at a position nearly equal to one of two sites related by the disorder in the P phase. With the ordering of the deuterons, the P-O bonds with covalently bonded deuteron elongate, and those without covalently bonded deuteron reduce their lengths to some extend from the values determined in the P phase. Two oxygens involved in the hydrogen bond with the bond angle 179.2deg exhibits especially large displacements in the F phase. This suggests strongly an importance of this hydrogen bond in the polarization appearance and in the ferroelectric transition. Comparison with results of non-deuterated salt indicates that only the hydrogen bonds forming the chains show significant isotope shift. In particular, the hydrogen bond with the bond angle 179.2deg exhibits the most pronounced shift on the angle parameter defined by the angle between the line connecting two sites of disordered proton or deuteron and the line connecting two oxygens involved in the hydrogen bond. (author)
International Nuclear Information System (INIS)
Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E
2012-01-01
In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.
Effects of smartphone overuse on hand function, pinch strength, and the median nerve.
İnal, Esra Erkol; Demİrcİ, kadİr; Çetİntürk, Azİze; Akgönül, Mehmet; Savaş, Serpİl
2015-08-01
In this study we investigated the flexor pollicis longus (FPL) tendon and median nerve in smartphone users by ultrasonography to assess the effects of smartphone addiction on the clinical and functional status of the hands. One hundred two students were divided into 3 groups: non-users, and high or low smartphone users. Smartphone Addiction Scale (SAS) scores and grip and pinch strengths were recorded. Pain in thumb movement and rest and hand function were evaluated on the visual analog scale (VAS) and the Duruöz Hand Index (DHI), respectively. The cross-sectional areas (CSAs) of the median nerve and the FPL tendon were calculated bilaterally using ultrasonography. Significantly higher median nerve CSAs were observed in the dominant hands of the high smartphone users than in the non-dominant hands (PSmartphone overuse enlarges the median nerve, causes pain in the thumb, and decreases pinch strength and hand functions. © 2015 Wiley Periodicals, Inc.
A study of retrograde degeneration of median nerve forearm ...
African Journals Online (AJOL)
Mona Mokhtar El Bardawil
2013-10-22
Oct 22, 2013 ... tient clinic of the Physical Medicine Rheumatology and Reha- bilitation ... F-wave to calculate axillary F central loop (AFCL) latency of median and ..... amplitude which substantially results from the block of faster ... Postoperative electrophysiological follow up for ... Regional rheumatic pain syndromes. In:.
A novel image inpainting technique based on median diffusion
Indian Academy of Sciences (India)
numerical methods such as anisotropic diffusion and multiresolution schemes. Some steps ... Roth & Black (2005) have developed a framework for learning a generic and expressive image priors that ..... This paper presents a new approach for image inpainting by propagating median information .... J. Graphics Tools 9(1):.
Spectral Weighting Functions for Single-symbol Phase-noise Specifications in OFDM Systems
Hoeksema, F.W.; Schiphorst, Roelof; Slump, Cornelis H.
2003-01-01
For the specification of phase-noise requirements for the front-end of a HiperLAN/2 system we investigated available literature on the subject. Literature differed in several aspects. One aspect is in the type of phase-noise used (Wiener phase-noise or small-angle phase noise). A Wiener phase-noise
Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow
Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.
2001-07-01
We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.
International Nuclear Information System (INIS)
Jung, V.
1982-07-01
Drawing annealed cylindric 18/8 Cr Ni steels, which are originally free of textures, produces the transformed phases - hcp and bcc - both showing major texture contributions with increasing stretching of the cylindric specimens. After stretching the original fcc-phase shows two orientations: [100]fcc vertical stroke vertical stroke cylinder axis and [111]fcc vertical stroke vertical stroke cylinder axis, i.e. direction of stress. In both cases the martensitic phase is produced by gliding and shear in the sequence fcc → hcp → bcc by Nishiyama-Wasserman (N-W) or Kurdjumov-Sachs (K-S) transformation in the (111)fcc planes, which enclose a small angle with direction of stress, i.e. cylinder axis. The calculated orientation distributions of the (110)bcc reflex are compared with the distribution measured by neutron diffraction to get information on the bulk material. The special K-S transformation with only 6 (110)bcc orientations shows relatively good agreement with the measured distribution, except at small angles ω between the cylinder axis and the scattering vector. This might be caused by the isotropic fraction of the fcc phase producing an anisotropic (110)bcc orientation distribution. (orig.) [de
Clinical Outcomes following median to radial nerve transfers
Ray, Wilson Z.; Mackinnon, Susan E.
2010-01-01
Purpose In this study the authors evaluate the clinical outcomes in patients with radial nerve palsy who underwent nerve transfers utilizing redundant fascicles of median nerve (innervating the flexor digitorum superficialis and flexor carpi radialis muscles) to the posterior interosseous nerve and the nerve to the extensor carpi radialis brevis. Methods A retrospective review of the clinical records of 19 patients with radial nerve injuries who underwent nerve transfer procedures using the median nerve as a donor nerve were included. All patients were evaluated using the Medical Research Council (MRC) grading system. Results The mean age of patients was 41 years (range 17 – 78 years). All patients received at least 12 months of follow-up (20.3 ± 5.8 months). Surgery was performed at a mean of 5.7 ± 1.9 months post-injury. Post-operative functional evaluation was graded according to the following scale: grades MRC 0/5 - MRC 2/5 were considered poor outcomes, while MRC of 3/5 was a fair result, MRC grade 4/5 was a good result, and grade 4+/5 was considered an excellent outcome. Seventeen patients (89%) had a complete radial nerve palsy while two patients (11%) had intact wrist extension but no finger or thumb extension. Post-operatively all patients except one had good to excellent recovery of wrist extension. Twelve patients recovered good to excellent finger and thumb extension, two patients had fair recovery, five patients had a poor recovery. Conclusions The radial nerve is a commonly injured nerve, causing significant morbidity in affected patients. The median nerve provides a reliable source of donor nerve fascicles for radial nerve reinnervation. This transfer was first performed in 1999 and evolved over the subsequent decade. The important nuances of both surgical technique and motor re-education critical for to the success of this transfer have been identified and are discussed. PMID:21168979
CT morphology of benign median nerve tumors
International Nuclear Information System (INIS)
Feyerabend, T.; Schmitt, R.; Lanz, U.; Warmuth-Metz, M.; Wuerzburg Univ.
1990-01-01
Computed tomography (CT) was performed in 3 patients with benign tumors of the median nerve, histologically confirmed as neurilemmoma, fibrolipoma and hemangioma. The neurilemmoma showed a ring-shaped contrast enhancement. The fibrolipoma presented with areas of solid soft tissue and areas of fat. The hemangioma was a solid tumor with a lacunar, vascular contrast enhancement. According to our experience and to the previous literature CT gives useful information regarding the anatomic location, size, and relationship of peripheral nerve sheath tumors to surrounding structures, and may help to differentiate between various tumor types. (orig.)
Prevalence and anatomical pattern of the median artery among ...
African Journals Online (AJOL)
Knowledge of the anatomy of median arteries is important in the diagnosis and management of carpal tunnel and pronator teres syndromes, reconstructive surgery in the forearm, minimizing inadvertent vascular injury as well as in limiting operative complications due to unexpected bleeding. The anatomical pattern displays ...
International Nuclear Information System (INIS)
Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.
2009-01-01
We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.
Computer analysis of an adiabatic Stirling cryocooler using a two-phase two-component working fluid
International Nuclear Information System (INIS)
Renfroe, D.A.; Cheung, C.M.
1992-01-01
This paper describes the performance and behavior of a Stirling cyrocooler incorporating a working fluid composed of helium and nitrogen. At the operating temperature of the cryocooler (80 K), the nitrogen component will condense in the freezer section. It is shown that the phase change in the working fluid increased the heat lifted for a given size and weight of machine and the coefficient of performance. The magnitude of these effects was dependent on the mass ratio of nitrogen to helium, phase angle between the compression and expansion processes, and the ratio of the compression space volume to the expansion space volume. The optimum heat lifted performance was obtained for a mass ratio of four parts of nitrogen to one part of helium, a phase angle of approximately 100 degrees, and a volume ratio of two which resulted in a heat lifted increase of 75% over the single phase, 90 degree phase angle configuration. The coefficient of performance showed a 20% improvement
International Nuclear Information System (INIS)
Yao, Lawrence; Gai, Neville
2009-01-01
Enlargement of the median nerve is an objective potential imaging sign of carpal tunnel syndrome. Diffusion tensor MRI (DTI) may provide additional structural information that may prove useful in characterizing median neuropathy. This study further examines normal values for median nerve cross-sectional area (CSA), apparent diffusion coefficient (ADC), and fractional anisotropy (FA). Twenty-three wrists in 17 healthy volunteers underwent MRI of the wrist at 3 T. In 13 subjects, DTI was performed at a B value of 600 mm 2 /s. Median nerve CSA, ADC, and FA were analyzed at standardized anatomic levels. Mean (SD) median nerve CSA within the proximal carpal tunnel was 10.0 (3.4) mm 2 . The mean (SD) FA of the median nerve was 0.71 (0.06) and 0.70 (0.13) proximal to and within the carpal tunnel, respectively. There was a significant difference between nerve CSA and ADC, but not FA, at the distal forearm and proximal carpal tunnel. Nerve CSA, ADC, and FA did not differ between men and women or between dominant and non-dominant wrists. Nerve CSA at the proximal carpal tunnel was positively correlated with subject age and body mass index. Our results suggest a 90% upper confidence limit for normal median nerve CSA of 14.4 mm 2 at the proximal carpal tunnel, higher than normal limits reported by many ultrasound studies. We observed a difference between the CSA and ADC, but not the FA, of the median nerve at the distal forearm and proximal carpal tunnel levels. (orig.)
Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes
Zhong, Hua; Wang, Xiaoping; Salama, Amgad; Sun, Shuyu
2014-01-01
We investigate the two-phase flow in a horizontally placed Y-shaped tube with different Young's angle and width in each branch. By using a quasistatic approach, we can determine the specific contact position and the equilibrium contact angle
Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung
2014-09-01
Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (φ1 and φ2) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ(DS) list as a criterion to select optimized phases φ(am) from φ1 or φ2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases φ(SAD) has been developed. Based on this work, reflections with an angle θ(DS) in the range 35-145° are selected for an optimized improvement, where θ(DS) is the angle between the initial phase φ(SAD) and a preliminary density-modification (DM) phase φ(DM)(NHL). The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.
Median Hetero-Associative Memories Applied to the Categorization of True-Color Patterns
Vázquez, Roberto A.; Sossa, Humberto
Median associative memories (MED-AMs) are a special type of associative memory based on the median operator. This type of associative model has been applied to the restoration of gray scale images and provides better performance than other models, such as morphological associative memories, when the patterns are altered with mixed noise. Despite of his power, MED-AMs have not been applied in problems involving true-color patterns. In this paper we describe how a median hetero-associative memory (MED-HAM) could be applied in problems that involve true-color patterns. A complete study of the behavior of this associative model in the restoration of true-color images is performed using a benchmark of 14400 images altered by different type of noises. Furthermore, we describe how this model can be applied to an image categorization problem.
International Nuclear Information System (INIS)
Rauhala, E.; Raeisaenen, J.
1994-01-01
The exfoliation procedure of the ion range determination of gaseous implants in single crystal GaAs is investigated. The correlation of the observed crater depth with the ion range is studied for random, left angle 100 right angle and left angle 110 right angle axial orientation high dose implantations of 1.5-2.5 MeV 1 H and 4 He ions. Depending on the experimental conditions, the crater depths corresponded to range values between the modal range and the range maximum. The observed crater depths could be related to the actual He concentration depth distributions by determining the profiles of the 4 He implants by 2.7 MeV proton backscattering. The implantation parameters affecting the exfoliation process, and especially the increase rate of the sample temperature, are investigated. The range distribution parameters for the 1.5 MeV 4 He implants are presented. ((orig.))
Dual wavelength multiple-angle light scattering system for cryptosporidium detection
Buaprathoom, S.; Pedley, S.; Sweeney, S. J.
2012-06-01
A simple, dual wavelength, multiple-angle, light scattering system has been developed for detecting cryptosporidium suspended in water. Cryptosporidium is a coccidial protozoan parasite causing cryptosporidiosis; a diarrheal disease of varying severity. The parasite is transmitted by ingestion of contaminated water, particularly drinking-water, but also accidental ingestion of bathing-water, including swimming pools. It is therefore important to be able to detect these parasites quickly, so that remedial action can be taken to reduce the risk of infection. The proposed system combines multiple-angle scattering detection of a single and two wavelengths, to collect relative wavelength angle-resolved scattering phase functions from tested suspension, and multivariate data analysis techniques to obtain characterizing information of samples under investigation. The system was designed to be simple, portable and inexpensive. It employs two diode lasers (violet InGaN-based and red AlGaInP-based) as light sources and silicon photodiodes as detectors and optical components, all of which are readily available. The measured scattering patterns using the dual wavelength system showed that the relative wavelength angle-resolved scattering pattern of cryptosporidium oocysts was significantly different from other particles (e.g. polystyrene latex sphere, E.coli). The single wavelength set up was applied for cryptosporidium oocysts'size and relative refractive index measurement and differential measurement of the concentration of cryptosporidium oocysts suspended in water and mixed polystyrene latex sphere suspension. The measurement results showed good agreement with the control reference values. These results indicate that the proposed method could potentially be applied to online detection in a water quality control system.
Wafer scale oblique angle plasma etching
Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean
2017-05-23
Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.
DEFF Research Database (Denmark)
Risager, Morten S.; Södergren, Carl Anders
2017-01-01
It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...
A study of retrograde degeneration of median nerve forearm ...
African Journals Online (AJOL)
Introduction: Carpal tunnel syndrome (CTS) is a disorder of the hand which results from compression of the median nerve within its fibro-osseous tunnel at the wrist. The slowing in the forearm motor conduction velocity suggests the presence of retrograde degeneration. Existing studies conflict regarding a correlation ...
Optimum Tilt Angle at Tropical Region
Directory of Open Access Journals (Sweden)
S Soulayman
2015-02-01
Full Text Available : One of the important parameters that affect the performance of a solar collector is its tilt angle with the horizon. This is because of the variation of tilt angle changes the amount of solar radiation reaching the collector surface. Meanwhile, is the rule of thumb, which says that solar collector Equator facing position is the best, is valid for tropical region? Thus, it is required to determine the optimum tilt as for Equator facing and for Pole oriented collectors. In addition, the question that may arise: how many times is reasonable for adjusting collector tilt angle for a definite value of surface azimuth angle? A mathematical model was used for estimating the solar radiation on a tilted surface, and to determine the optimum tilt angle and orientation (surface azimuth angle for the solar collector at any latitude. This model was applied for determining optimum tilt angle and orientation in the tropical zones, on a daily basis, as well as for a specific period. The optimum angle was computed by searching for the values for which the radiation on the collector surface is a maximum for a particular day or a specific period. The results reveal that changing the tilt angle 12 times in a year (i.e. using the monthly optimum tilt angle maintains approximately the total amount of solar radiation near the maximum value that is found by changing the tilt angle daily to its optimum value. This achieves a yearly gain in solar radiation of 11% to 18% more than the case of a solar collector fixed on a horizontal surface.
Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains
Energy Technology Data Exchange (ETDEWEB)
Muñoz, O.; Moreno, F.; Guirado, D.; Escobar-Cerezo, J. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Vargas-Martín, F. [Department of Electromagnetism and Electronics, University of Murcia, E-30100 Murcia (Spain); Min, M. [SRON Netherlands Institute for Space Research, Sobornnelaan 2, 3584 CA Utrecht (Netherlands); Hovenier, J. W. [Astronomical Institute “Anton Pannekoek,” University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands)
2017-09-01
We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (i) soft forward peaks and (ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.
Directory of Open Access Journals (Sweden)
Hoi-Chi Woo
Full Text Available Certain hand activities cause deformation and displacement of the median nerve at the carpal tunnel due to the gliding motion of tendons surrounding it. As smartphone usage escalates, this raises the public's concern whether hand activities while using smartphones can lead to median nerve problems.The aims of this study were to 1 develop kinematic graphs and 2 investigate the associated deformation and rotational information of median nerve in the carpal tunnel during hand activities.Dominant wrists of 30 young adults were examined with ultrasonography by placing a transducer transversely on their wrist crease. Ultrasound video clips were recorded when the subject performing 1 thumb opposition with the wrist in neutral position, 2 thumb opposition with the wrist in ulnar deviation and 3 pinch grip with the wrist in neutral position. Six still images that were separated by 0.2-second intervals were then captured from the ultrasound video for the determination of 1 cross-sectional area (CSA, 2 flattening ratio (FR, 3 rotational displacement (RD and 4 translational displacement (TD of median nerve in the carpal tunnel, and these collected information of deformation, rotational and displacement of median nerve were compared between 1 two successive time points during a single hand activity and 2 different hand motions at the same time point. Finally, kinematic graphs were constructed to demonstrate the mobility of median nerve during different hand activities.Performing different hand activities during this study led to a gradual reduction in CSA of the median nerve, with thumb opposition together with the wrist in ulnar deviation causing the greatest extent of deformation of the median nerve. Thumb opposition with the wrist in ulnar deviation also led to the largest extent of TD when compared to the other two hand activities of this study. Kinematic graphs showed that the motion pathways of median nerve during different hand activities were complex
Berry phase in entangled systems
International Nuclear Information System (INIS)
Bertlmann, R.A.; Hasegawa, Y.; Hiesmayr, B.C.; Durstberger, C.
2005-01-01
Full text: The influence of the geometric phase, in particular the Berry phase, on an entangled spin-1/2 system is studied. We discuss in detail the case, where the geometric phase is generated only by one part of the Hilbert space. We are able to cancel the effects of the dynamical phase by using the 'spin-echo' method. We analyze how the Berry phase affects the Bell angles and the maximal violation of a CHSH-Bell inequality. Furthermore, we suggest an experimental realization of our setup within neutron interferometry. It is possible to create entanglement between different degrees of freedom (spin and spatial degree of freedom) for a single neutron. The influence of the geometrical phase on the entangled neutron state is tested experimentally which is work in progress. (author)
New Horizons High-Phase Observations of Distant Kuiper Belt Objects
Verbiscer, A.; Porter, S.; Spencer, J. R.; Buie, M. W.; Benecchi, S.; Weaver, H. A., Jr.; Buratti, B. J.; Ennico Smith, K.; Olkin, C.; Stern, S. A.; Young, L. A.; Cheng, A. F.
2017-12-01
From its unique vantage point far from the Sun, NASA's New Horizons spacecraft has observed Kuiper Belt Objects at separations ranging from 0.1 to 70 AU, and at solar phase angles far larger than those attainable from Earth. We have constructed the first KBO solar phase curves with substantial phase angle coverage for targets including Haumea, Makemake, Quaoar, Arawn (Porter et al. 2016, Astrophys. J. Lett. 828, L15), and 2002 MS4. We compare the phase functions of these KBOs with those of objects in the Pluto system and other Solar System bodies such as comets, asteroids, and icy satellites. For KBOs with known geometric albedos, these measurements enable calculation of the phase integral, an important photometric property that characterizes the energy balance on a distant KBO surface. During its approach to 2014 MU69, and following its close encounter on 1 January 2019, New Horizons will continue to exploit its capabilities as NASA's only observatory within the Kuiper Belt itself.
Malgarinos, Ilias; Nikolopoulos, Nikolaos; Marengo, Marco; Antonini, Carlo; Gavaises, Manolis
2014-10-01
In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact angles. These angles are required in order to define the wetting properties of liquid phases when interacting with a solid surface. The physical model is implemented as a source term in the momentum equation of a Navier-Stokes CFD flow solver as an "adhesion-like" force which acts at the triple-phase contact line as a result of capillary interactions between the liquid drop and the solid substrate. The numerical simulations capture the liquid-air interface movement by considering the volume of fluid (VOF) method and utilizing an automatic local grid refinement technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously minimize numerical diffusion of the interface. The proposed model is validated against previously reported experimental data of normal impingement of water droplets on dry surfaces at room temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both for hydrophilic (θadv=10°-70°) and hydrophobic (θadv=105°-120°) surfaces, has been examined. Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact angle; the latter is found in reasonable agreement against available experimental measurements. It is thus concluded that theimplementation of this model is an effective approach for overcoming the need of a pre-defined dynamic contact angle law, frequently adopted as
Interpretation and Utility of the Moments of Small-Angle X-Ray Scattering Distributions.
Modregger, Peter; Kagias, Matias; Irvine, Sarah C; Brönnimann, Rolf; Jefimovs, Konstantins; Endrizzi, Marco; Olivo, Alessandro
2017-06-30
Small angle x-ray scattering has been proven to be a valuable method for accessing structural information below the spatial resolution limit implied by direct imaging. Here, we theoretically derive the relation that links the subpixel differential phase signal provided by the sample to the moments of scattering distributions accessible by refraction sensitive x-ray imaging techniques. As an important special case we explain the scatter or dark-field contrast in terms of the sample's phase signal. Further, we establish that, for binary phase objects, the nth moment scales with the difference of the refractive index decrement to the power of n. Finally, we experimentally demonstrate the utility of the moments by quantitatively determining the particle sizes of a range of powders with a laboratory-based setup.
Farin, Maxime; Mangeney, Anne; Roche, Olivier
2014-05-01
Geophysical granular flows commonly interact with their substrate in various ways depending on the mechanical properties of the underlying material. Granular substrates, resulting from deposition of earlier flows or various geological events, are often eroded by avalanches [see Hungr and Evans, 2004 for review]. The entrainment of underlying debris by the flow is suspected to affect flow dynamics because qualitative and quantitative field observations suggest that it can increase the flow velocity and deposit extent, depending on the geological setting and flow type [Sovilla et al., 2006; Iverson et al., 2011]. Direct measurement of material entrainment in nature, however, is very difficult. We conducted laboratory experiments on granular column collapse over an inclined channel with and without an erodible bed of granular material. The controlling parameters were the channel slope angle, the granular column volume and its aspect ratio (i.e. height over length), the inclination of the column with respect to the channel base, the channel width, and the thickness and compaction of the erodible bed. For slope angles below a critical value θc, between 10° and 16°, the runout distance rf is proportional to the initial column height h0 and is unaffected by the presence of an erodible bed. On steeper slopes, the flow dynamics change fundamentally since a last phase of slow propagation develops at the end of the flow front deceleration, and prolongates significantly the flow duration. This phase has similar characteristics that steady, uniform flows. The slow propagation phase lasts longer for increasing slope angle, column volume, column inclination with respect to the slope, and channel width, and for decreasing column aspect ratio. It is however independent of the maximum front velocity and, on an erodible bed, of the maximum depth of excavation within the bed. Both on rigid and erodible beds, the increase of the slow propagation phase duration has a crucial effect
An imaging method of wavefront coding system based on phase plate rotation
Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua
2018-01-01
Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.
Quadratic Assignment of Hubs in p-Hub Median Problem
DEFF Research Database (Denmark)
Gelareh, Shahin
We introduce Generalized p-Hub Median Problem (GpHMP) that seeks to locate p hub nodes and install p distinct hub facilities/operators on the hubs while discount factor resulted by consolidation of flow on the hub links depends on the facilities/operators that are installed/operating on both hub...
Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.
Iliev, Stanimir; Pesheva, Nina
2016-06-01
We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.
Regularization of DT-MR images using a successive Fermat median filtering method.
Kwon, Kiwoon; Kim, Dongyoun; Kim, Sunghee; Park, Insung; Jeong, Jaewon; Kim, Taehwan; Hong, Cheolpyo; Han, Bongsoo
2008-05-21
Tractography using diffusion tensor magnetic resonance imaging (DT-MRI) is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of greatest diffusion in the white matter of the brain. To reduce the noise in DT-MRI measurements, a tensor-valued median filter, which is reported to be denoising and structure preserving in the tractography, is applied. In this paper, we proposed the successive Fermat (SF) method, successively using Fermat point theory for a triangle contained in the two-dimensional plane, as a median filtering method. We discussed the error analysis and numerical study about the SF method for phantom and experimental data. By considering the computing time and the image quality aspects of the numerical study simultaneously, we showed that the SF method is much more efficient than the simple median (SM) and gradient descents (GD) methods.
Regularization of DT-MR images using a successive Fermat median filtering method
International Nuclear Information System (INIS)
Kwon, Kiwoon; Kim, Dongyoun; Kim, Sunghee; Park, Insung; Jeong, Jaewon; Kim, Taehwan; Hong, Cheolpyo; Han, Bongsoo
2008-01-01
Tractography using diffusion tensor magnetic resonance imaging (DT-MRI) is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of greatest diffusion in the white matter of the brain. To reduce the noise in DT-MRI measurements, a tensor-valued median filter, which is reported to be denoising and structure preserving in the tractography, is applied. In this paper, we proposed the successive Fermat (SF) method, successively using Fermat point theory for a triangle contained in the two-dimensional plane, as a median filtering method. We discussed the error analysis and numerical study about the SF method for phantom and experimental data. By considering the computing time and the image quality aspects of the numerical study simultaneously, we showed that the SF method is much more efficient than the simple median (SM) and gradient descents (GD) methods
Regularization of DT-MR images using a successive Fermat median filtering method
Energy Technology Data Exchange (ETDEWEB)
Kwon, Kiwoon; Kim, Dongyoun; Kim, Sunghee; Park, Insung; Jeong, Jaewon; Kim, Taehwan [Department of Biomedical Engineering, Yonsei University, Wonju, 220-710 (Korea, Republic of); Hong, Cheolpyo; Han, Bongsoo [Department of Radiological Science, Yonsei University, Wonju, 220-710 (Korea, Republic of)], E-mail: bshan@yonsei.ac.kr
2008-05-21
Tractography using diffusion tensor magnetic resonance imaging (DT-MRI) is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of greatest diffusion in the white matter of the brain. To reduce the noise in DT-MRI measurements, a tensor-valued median filter, which is reported to be denoising and structure preserving in the tractography, is applied. In this paper, we proposed the successive Fermat (SF) method, successively using Fermat point theory for a triangle contained in the two-dimensional plane, as a median filtering method. We discussed the error analysis and numerical study about the SF method for phantom and experimental data. By considering the computing time and the image quality aspects of the numerical study simultaneously, we showed that the SF method is much more efficient than the simple median (SM) and gradient descents (GD) methods.
Influence of median surgeon operative duration on adverse outcomes in bariatric surgery.
Reames, Bradley N; Bacal, Daniel; Krell, Robert W; Birkmeyer, John D; Birkmeyer, Nancy J O; Finks, Jonathan F
2015-01-01
Evidence suggests that prolonged operative time adversely affects surgical outcomes. However, whether faster surgeons have better outcomes is unclear, as a surgeon׳s speed could reflect skill and efficiency, but may alternatively reflect haste. This study evaluates whether median surgeon operative time is associated with adverse surgical outcomes after laparoscopic Roux-en-Y gastric bypass. We performed a retrospective cohort study using statewide clinical registry data from the years 2006 to 2012. Surgeons were ranked by their median operative time and grouped into terciles. Multivariable logistic regression with robust standard errors was used to evaluate the influence of median surgeon operative time on 30-day surgical outcomes, adjusting for patient and surgeon characteristics, trainee involvement, concurrent procedures, and the complex interaction between these variables. A total of 16,344 patients underwent surgery during the study period. Compared to surgeons in the fastest tercile, slow surgeons required 53 additional minutes to complete a gastric bypass procedure (median [interquartile range] 139 [133-150] versus 86 [69-91], Ppatient characteristic only, slow surgeons had significantly higher adjusted rates of any complication, prolonged length of stay, emergency department visits or readmissions, and venous thromboembolism (VTE). After further adjustment for surgeon characteristics, resident involvement, and the interaction between these variables, slow surgeons had higher rates of any complication (10.5% versus 7.1%, P=.039), prolonged length of stay (14.0% versus 4.4%, P=.002), and VTE (0.39% versus .22%, P<.001). Median surgeon operative duration is independently associated with adjusted rates of certain adverse outcomes after laparoscopic Roux-en-Y gastric bypass. Improving surgeon efficiency while operating may reduce operative time and improve the safety of bariatric surgery. Copyright © 2015 American Society for Bariatric Surgery. Published by
A controlled evaluation of oral screen effects on intra-oral pressure curve characteristics.
Knösel, Michael; Jung, Klaus; Kinzinger, Gero; Bauss, Oskar; Engelke, Wilfried
2010-10-01
The purpose of this study was to quantify the impact of oral screen (OS) application on intra-oral pressure characteristics in three malocclusion groups. Fifty-six randomly recruited participants (26 males and 30 females) who met the inclusion criteria of either an Angle Class I occlusal relationships or Angle Class II1 or II2 malocclusions, were assigned by dentition to group I (n = 31), group II1 (n = 12), or group II2 (n = 13). Two 3 minute periods of intra-oral pressure monitoring were conducted on each participant, using two different oral end fittings connected to a piezo-resistive relative pressure sensor: (1) a flexible OS and (2) a small-dimensioned air-permeable end cap (EC), which was placed laterally in the premolar region, thus recording intra-oral pressure independent of the influence of the OS. Pressure curve characteristics for both periods and between the malocclusion groups were evaluated with reference to the frequency of swallowing peaks, duration, and altitude of negative pressure plateau phases and the area under the pressure curve. Statistical analysis was undertaken using analysis of variance (ANOVA), the Wilcoxon Mann-Whitney test, and spearman correlation coefficient. A median number of two peaks (median height -20.9 mbar) and three plateau phases (median height of -2.3 mbar) may be regarded as normative for normal occlusion subjects during a 3 minute period, at rest. OS application raised the median average duration and height of intra-oral negative pressure plateau phases in the II1 subjects, exceeding those of group I, but less than the plateau duration in group II2. Median peak heights were distinctively lower in groups I and II1 during OS application. It is concluded that additional training for extension of intra-oral pressure phases may be a promising approach to pre-orthodontic Class II division 1 treatment.
Laser peripheral iridoplasty for angle-closure.
Ng, Wai Siene; Ang, Ghee Soon; Azuara-Blanco, Augusto
2012-02-15
Angle-closure glaucoma is a leading cause of irreversible blindness in the world. Treatment is aimed at opening the anterior chamber angle and lowering the IOP with medical and/or surgical treatment (e.g. trabeculectomy, lens extraction). Laser iridotomy works by eliminating pupillary block and widens the anterior chamber angle in the majority of patients. When laser iridotomy fails to open the anterior chamber angle, laser iridoplasty may be recommended as one of the options in current standard treatment for angle-closure. Laser peripheral iridoplasty works by shrinking and pulling the peripheral iris tissue away from the trabecular meshwork. Laser peripheral iridoplasty can be used for crisis of acute angle-closure and also in non-acute situations. To assess the effectiveness of laser peripheral iridoplasty in the treatment of narrow angles (i.e. primary angle-closure suspect), primary angle-closure (PAC) or primary angle-closure glaucoma (PACG) in non-acute situations when compared with any other intervention. In this review, angle-closure will refer to patients with narrow angles (PACs), PAC and PACG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2011, Issue 12), MEDLINE (January 1950 to January 2012), EMBASE (January 1980 to January 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). There were no date or language restrictions in the electronic searches for trials. The electronic databases were last searched on 5 January 2012. We included only randomised controlled trials (RCTs) in this review. Patients with narrow angles, PAC or PACG were eligible. We excluded studies that included only patients with acute presentations
Numerical investigation of the early flight phase in ski-jumping.
Gardan, N; Schneider, A; Polidori, G; Trenchard, H; Seigneur, J M; Beaumont, F; Fourchet, F; Taiar, R
2017-07-05
The purpose of this study is to develop a numerical methodology based on real data from wind tunnel experiments to investigate the effect of the ski jumper's posture and speed on aerodynamic forces in a wide range of angles of attack. To improve our knowledge of the aerodynamic behavior of the ski jumper and his equipment during the early flight phase of the ski jump, we applied CFD methodology to evaluate the influence of angle of attack (α=14°, 21.5°, 29°, 36.5° and 44°) and speed (u=23, 26 and 29m/s) on aerodynamic forces in the situation of stable attitude of the ski jumper's body and skis. The standard k-ω turbulence model was used to investigate both the influence of the ski jumper's posture and speed on aerodynamic performance during the early flight phase. Numerical results show that the ski jumper's speed has very little impact on the lift and drag coefficients. Conversely, the lift and drag forces acting on the ski jumper's body during the early flight phase of the jump are strongly influenced by the variations of the angle of attack. The present results suggest that the greater the ski jumper's angle of inclination, with respect to the relative flow, the greater the pressure difference between the lower and upper parts of the skier. Further studies will focus on the dependency of the parameters with both the angle of attack α and the body-ski angle β as control variables. It will be possible to test and optimize different ski jumping styles in different ski jumping hills and investigate different environmental conditions such as temperature, altitude or crosswinds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Variability of pudendal and median nerve sensory perception thresholds in healthy persons.
Quaghebeur, Jörgen; Wyndaele, Jean-Jacques
2015-04-01
Normative current perception thresholds (CPTs) are used for the evaluation of sensory function in a variety of diseases. To evaluate the reproducibility of CPT measurements with sinusoidal current in healthy volunteers. Neuroselective CPT evaluations of the median and pudendal nerve in healthy volunteers were repeated with 1 week interval (T1 and T2). In the study group (N = 41) no difference between genders for age (MW-U: P = 0.91) and BMI (t-test: P = 0.18) were found. No significant difference between T1 and T2 was found (Paired t-test: all P-values > 0.05), although the intraclass correlation for each person was low. The variability of measures for the pudendal nerve was: ICC 2 kHz: 0.41; 250 Hz: 0.30; 5 Hz: 0.38, and for the median nerve respectively: 0.58; 0.46; 0.40. Normal CPTs were shown for the pudendal nerve: 2 kHz: 51%; 250 Hz: 76%; 5 Hz: 71%, and median nerve respectively: 78%; 98%; 80%. The pudendal nerve showed more deviating values compared to the median nerve. Both nerves showed deviating values. CPT values with sinusoidal current assessed with 1 week interval, showed a weak intraclass correlation. This finding limits the use of CPT values with this current for longitudinal studies. © 2014 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Shi-Wei Li
2015-08-01
Full Text Available AIM: To evaluate the difference in angle parameters and clinical outcome following phacoemulsification and combined phacotrabeculectomy in patients with acute primary angle closure (APAC using ultrasound biomicroscopy (UBM.METHODS: Patients (n=23, 31 eyes were randomized to receive phacoemulsification or combined phacotrabeculectomy (n=24, 31 eyes. Best-corrected visual acuity (BCVA, intraocular pressure (IOP, the main complications following surgery, and indentation gonioscopy and angle parameters measured using UBM were documented preoperatively and postoperatively.RESULTS:The improvement in BCVA in the phacoemulsification group was significantly greater than in the combined group (P<0.05. IOP in the phacoemulsification group was slightly higher than in the combined group following 1wk of follow-up (P<0.05, whereas there was no significant difference between the two groups at the latter follow-up (P>0.05. Phacoemulsification alone resulted in a slight increase in the trabecular ciliary processes distance compared with the combined surgery (P<0.05, whereas the other angle parameters showed no significant difference between the groups. Complications in combined group were greater than phacoemulsification only group.CONCLUSION:Both surgeries effectively opened the drainage angle and deepened the anterior chamber, and IOP was well controlled postoperatively. However, phacoemulsification showed better efficacy in improving visual function and showed reduced complications following surgery.
Numerical study of effect of pitch angle on performance characteristics of a HAWT
Directory of Open Access Journals (Sweden)
Sudhamshu A.R.
2016-03-01
Full Text Available Wind energy is one of the clean renewable forms of energy that can handle the existing global fossil fuel crisis. Although it contributes to 2.5% of the global electricity demand, with diminishing fossil fuel sources, it is important that wind energy is harnessed to a greater extent to meet the energy crisis and problem of pollution. The present work involves study of effect of pitch angle on the performance of a horizontal axis wind turbine (HAWT, NREL Phase VI. The wind velocities considered for the study are 7, 15.1 and 25.1 m/s. The simulations are performed using a commercial CFD code Fluent. A frozen rotor model is used for simulation, wherein the governing equations are solved in the moving frame of reference rotating with the rotor speed. The SST k-ω turbulence model has been used. It is seen that the thrust increases with increase in wind velocity, and decreases with increase in pitch angle. For a given wind velocity, there is an optimum pitch angle where the power generated by the turbine is maximum. The observed effect of pitch angle on the power produced has been correlated to the stall characteristics of the airfoil blade.
Contact angle and detachment energy of shape anisotropic particles at fluid-fluid interfaces.
Anjali, Thriveni G; Basavaraj, Madivala G
2016-09-15
The three phase contact angle of particles, a measure of its wettability, is an important factor that greatly influences their behaviour at interfaces. It is one of the principal design parameters for potential applications of particles as emulsion/foam stabilizers, functional coatings and other novel materials. In the present work, the effect of size, shape and surface chemistry of particles on their contact angle is investigated using the gel trapping technique, which facilitates the direct visualization of the equilibrium position of particles at interfaces. The contact angle of hematite particles of spherocylindrical, peanut and cuboidal shapes, hematite-silica core-shell and silica shells is reported at a single particle level. The spherocylindrical and peanut shaped particles are always positioned with their major axis parallel to the interface. However, for cuboidal particles at air-water as well as decane-water interfaces, different orientations namely - face-up, edge-up and the vertex-up - are observed. The influence of gravity on the equilibrium position of the colloidal particles at the interface is studied using the hematite-silica core-shell particles and the silica shells. The measured contact angle values are utilized in the calculations of the detachment and surface energies of the hematite particles adsorbed at the interface. Copyright © 2016 Elsevier Inc. All rights reserved.
Bauer, James M.; Grav, Tommy; Buratti, Bonnie J.; Hicks, Michael D.
2006-09-01
During its 2005 January opposition, the saturnian system could be viewed at an unusually low phase angle. We surveyed a subset of Saturn's irregular satellites to obtain their true opposition magnitudes, or nearly so, down to phase angle values of 0.01°. Combining our data taken at the Palomar 200-inch and Cerro Tololo Inter-American Observatory's 4-m Blanco telescope with those in the literature, we present the first phase curves for nearly half the irregular satellites originally reported by Gladman et al. [2001. Nature 412, 163-166], including Paaliaq (SXX), Siarnaq (SXXIX), Tarvos (SXXI), Ijiraq (SXXII), Albiorix (SXVI), and additionally Phoebe's narrowest angle brightness measured to date. We find centaur-like steepness in the phase curves or opposition surges in most cases with the notable exception of three, Albiorix and Tarvos, which are suspected to be of similar origin based on dynamical arguments, and Siarnaq.
Uncertainty in T1 mapping using the variable flip angle method with two flip angles
International Nuclear Information System (INIS)
Schabel, Matthias C; Morrell, Glen R
2009-01-01
Propagation of errors, in conjunction with the theoretical signal equation for spoiled gradient echo pulse sequences, is used to derive a theoretical expression for uncertainty in quantitative variable flip angle T 1 mapping using two flip angles. This expression is then minimized to derive a rigorous expression for optimal flip angles that elucidates a commonly used empirical result. The theoretical expressions for uncertainty and optimal flip angles are combined to derive a lower bound on the achievable uncertainty for a given set of pulse sequence parameters and signal-to-noise ratio (SNR). These results provide a means of quantitatively determining the effect of changing acquisition parameters on T 1 uncertainty. (note)
Directory of Open Access Journals (Sweden)
Mohammad Jafari
2017-12-01
Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a
Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel
2007-10-15
The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents.
16 CFR Figure 2 to Part 1203 - ISO Headform-Basic, Reference, and Median Planes
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false ISO Headform-Basic, Reference, and Median Planes 2 Figure 2 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... Headform-Basic, Reference, and Median Planes ER10MR98.002 ...
Effect of Nondissipative Terms in Dynamical Phases of Vortex Matter in a Periodic Pinning Array
Arovas, Daniel
2000-03-01
The zero temperature dynamical phases of driven vortex lattices [1] are reconsidered, introducing a nondynamical term (proportional to the sine of the Hall angle) into the equations of motion. While such a term does not affect the static thermodynamic phases of the system, it may have a profound effect on the dynamics. We find that finite Hall angle tends to reduce the effect of pinning in certain dynamical phases. [1] C. Reichhardt, C. J. Olson, and F. Nori, Phys. Rev. B 58, 6534, 1998.
IR Optics Measurement with Linear Coupling's Action-Angle Parameterization
Luo, Yun; Pilat, Fulvia Caterina; Satogata, Todd; Trbojevic, Dejan
2005-01-01
The interaction region (IP) optics are measured with the two DX/BPMs close to the IPs at the Relativistic Heavy Ion Collider (RHIC). The beta functions at IP are measured with the two eigenmodes' phase advances between the two BPMs. And the beta waists are also determined through the beta functions at the two BPMs. The coupling parameters at the IPs are also given through the linear coupling's action-angle parameterization. All the experimental data are taken during the driving oscillations with the AC dipole. The methods to do these measurements are discussed. And the measurement results during the beta*
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we
A Rare Variation of the Human Median Nerve Direction
Directory of Open Access Journals (Sweden)
Barfi
2016-04-01
Full Text Available Introduction The brachial plexus, a complex network of nerves, innervates to the upper limbs. Variation in the course of the nerves in the upper limb is common. Case Presentation This paper describes two cases of upper limb variations in a cadaver dissected at Lorestan University of Medical Sciences. In the first variation, the median nerve in the arm has a different route, so that the median moves deep into the brachialis muscle. In the latter case, after piercing the coracobrachialis muscle a musculocutaneous nerve exists between the brachialis and biceps and goes to the lateral region of the forearm. This is known as the lateral cutaneous nerve of the forearm nerve, and innervates the skin of the lateral part of the forearm and the dorsal part of the hand. Conclusions Because of the possibility of damage to the brachial plexus branches is high in upper limb injuries and surgeries, full knowledge of normal anatomy and variations of these branches is essential for orthopedic specialists, neurosurgeons, radiologists, and anatomists.
Predictions for the Dirac C P -violating phase from sum rules
Delgadillo, Luis A.; Everett, Lisa L.; Ramos, Raymundo; Stuart, Alexander J.
2018-05-01
We explore the implications of recent results relating the Dirac C P -violating phase to predicted and measured leptonic mixing angles within a standard set of theoretical scenarios in which charged lepton corrections are responsible for generating a nonzero value of the reactor mixing angle. We employ a full set of leptonic sum rules as required by the unitarity of the lepton mixing matrix, which can be reduced to predictions for the observable mixing angles and the Dirac C P -violating phase in terms of model parameters. These sum rules are investigated within a given set of theoretical scenarios for the neutrino sector diagonalization matrix for several known classes of charged lepton corrections. The results provide explicit maps of the allowed model parameter space within each given scenario and assumed form of charged lepton perturbations.
Directory of Open Access Journals (Sweden)
M.S. Nadiye–Tabbiruka
2009-12-01
Full Text Available Aerosil samples, heat treated and then silylated with various silanes at various temperatures have been characterised by adsorption of ethanol at 293 K. Adsorption isotherms were plotted and the BET specific surface areas were determined. Contact angles were measured by the captive bubble method at the three phase contact line in ethanol, on glass slides similarly modified. Silylation was found to alter the ethanol adsorptive properties on aerosil and increase the contact angles on the glass slides to extents that depend on the silane used as well as the concentration of residual silanols and that of surface silyl groups.
Implant Angle Monitor System of MC3-II
International Nuclear Information System (INIS)
Sato, Fumiaki; Sano, Makoto; Nakaoka, Hiroaki; Fujii, Yoshito; Kudo, Tetuya; Nakanishi, Makoto; Koike, Masazumi; Fujino, Yasushi
2008-01-01
Precise implant angle control is required for the latest generation of ion implanters to meet further shrink semiconductor device requirements. Especially, the highest angle accuracy is required for Halo implant process of Logic devices. The Halo implant angle affects the device performance, because slight differences of beam divergence change the overlap profile towards the extension. Additionally, twist angle accuracy is demanded in case of channeling angle implant. Therefore monitoring beam angles and wafer twist angles is important. A new monitoring system for the MC3-II, SEN Corp.'s single wafer type medium current implanter has been developed. This paper describes the angle control performance and monitoring system of the MC3-II. For the twist angle control, we developed a wafer notch angle monitor. The system monitors the wafer notch image on the platen. And the notch angle variation is calculated by using image processing method. It is also able to adjust the notch angle according to the angle error. For the tilt angle control, we developed a vertical beam profile monitor. The monitor system can detect beam profile of vertical directions with horizontally scanning beam. It also measures beam angles of a tilt direction to a wafer. The system configuration and sample beam data are presented.
Diagnosis of exercise-induced left bundle branch block at rest by scintigraphic phase analysis
International Nuclear Information System (INIS)
Schultz, D.A.; Wahl, R.L.; Juni, J.E.; Buda, A.J.; McMeekin, J.D.; Struble, L.R.; Tuscan, M.J.
1986-01-01
Accurate diagnosis of disease of the ventricular conducting system is essential for their appropriate therapy. Some conduction abnormalities, such as exercise-induced left bundle branch block (EX-LBBB), are not apparent on resting electrocardiograms. Phase analysis of rest and exercise radionuclide ventriculograms (RVG's) was used to compare four EX-LBBB patients with six normal controls. All patients had normal resting electrocardiograms, ejection fractions, and visually normal wall motion. First harmonic phase images were generated reflecting the timing of ventricular contraction. Dynamic phase displays were reviewed and graded in a blinded fashion by three independent experienced observers. Phase angle histograms of the right and left ventricle were determined for both resting and exercise images. The mean phase angle and standard deviation were also calculated for each ventricle. Visual grading of the resting phase images failed to show a significant difference between normal patients and patients with EX-LBBB. Quantitative analysis, however, revealed a significant difference in mean phase angle differences (LV-RV) in resting studies: 0.8 0 (+-1.9 0 SEM) in normal versus 9.3 0 (+-2.3 0 SEM) in EX-LBBB patients (P 0 in normals vs. 31.2 0 in EX-LBBB patients (P<0.001). Qualitative phase analysis of resting RVG's permits the diagnosis of cardiac conduction disease that is not apparent on the resting EKG and may result in better monitoring and treatment. (orig.)
Experimental study of crossing angle collision
International Nuclear Information System (INIS)
Chen, T.; Rice, D.; Rubin, D.; Sagan, D.; Tigner, M.
1993-01-01
The non-linear coupling due to the beam-beam interaction with crossing angle has been studied. The major effect of a small (∼12mrad) crossing angle is to excite 5Q x ±Q s =integer coupling resonance family on large amplitude particles, which results in bad lifetime. On the CESR, a small crossing angle (∼2.4mr) was created at the IP and a reasonable beam-beam tune-shift was achieved. The decay rate of the beam is measured as a function of horizontal tune with and without crossing angle. The theoretical analysis, simulation and experimental measurements have a good agreement. The resonance strength as a function of crossing angle is also measured
DEFF Research Database (Denmark)
Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik
1998-01-01
This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...
Small-angle neutron scattering and rheological analyses of nanoemulsion for cosmetics
International Nuclear Information System (INIS)
Kume, Takuji
2014-01-01
A stable nanoemulsion consisting of nanometer-sized oil droplets in water having a self-standing capability was prepared by high-pressure emulsification. Rheological measurements show that the nanoemulsion has a high viscosity and a yield stress. Small-angle neutron scattering (SANS) revealed the presence of an ordered crystal-like lattice structure in addition to spherical domains with a diameter of ca. 30 nm. Nonfluidity of nanoemulsion is ascribed to crystal-like lattice structure of nanodroplets. A mixed solution of 2-hydroxyethyl cellulose and the nanoemulsion has shear-thickening behavior (shear-induced gelation). Real-time SANS measurements with a Couette geometry as a function of shear rate (Rheo-SANS) revealed that a possible mechanism of gelation was proposed from the viewpoint of shear-induced percolation transition. Furthermore, mixtures of the nanoemulsion and poly(acrylic acid) solutions were opaque and kept the same interdomain distance and high viscosity. We estimated that it had phase-separated structure between nanoemulsion phase and poly(acrylic acid) solution phase. (author)
Effect of shear on cubic phases in gels of a diblock copolymer
DEFF Research Database (Denmark)
Hamley, I.W.; Pople, J.A.; Fairclough, J.P.A.
1998-01-01
The effect of shear on the orientation of cubic micellar phases formed by a poly(oxyethylene)poly(oxybutylene) diblock copolymer in aqueous solution has been investigated using small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS). SAXS was performed on samples oriented in...
On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.
Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo
2018-04-28
We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact
Needle twins and right-angled twins in minerals: comparison between experiment and theory
Salje, E.K.H.; Buckley, A.; Van Tendeloo, G.; Ishibashi, Y.; Nord, G.L.
1998-01-01
Transformation twinning in minerals forms isolated twin walls, intesecting walls with corner junctions, and wedge-shaped twins as elements of hierarchical patterns. When cut perpendicular to the twin walls, the twins have characteristic shapes, right-angled and needle-shaped wall traces, which can be observed by transmission electron microscopy or by optical microscopy. Theoretical geometries of wall shapes recently derived for strain-related systems should hold for most displacive and order-disorder type phase transitions: 1) right-angled twins show curved junctions; 2) needle-shaped twins contain flat wall segments near the needle tip if the elastic behaviour of the mineral is dominated by its anisotroyp; 3) additional bending forces and pinning effects lead to curved walls near the junction that make the needle tip appear more blunt. Bent right-angled twins were analyzed in Gd2(MoO4)3. Linear needle tips were found in WO3, [N(CH3)4]2.ZnBr4 CrAl, BiVO4, GdBa2Cu3O7, and PbZrO. Parabolic tips occur in K2Ba(NO2)4, and GeTe whereas exponential curvatures appear in BaTiO3, KSCN, Pb3(PO4)2, CaTiO3, alkali feldspars, YBa2Cu3O7, and MnAl. The size and shape of the twin microstructure relates to its formation during the phase transition and the subsequent annealing history. The mobility of the twin walls after formation depends not only on the thermal activation but also on the structure of the wall, which may be pinned to impurities on a favorable structural site. Depinnign energies are often large compared with thermal energies for diffusion. This leads to kinetic time scales for twin coarsening that are comparable to geological time scales. Therefore, transformation twins that exhibit needle domains not only indicate that the mineral underwent a structural phase transition but also contain information about its subsequent geological history.
Pudendal and median nerve sensory perception threshold: a comparison between normative studies.
Quaghebeur, Jörgen; Wyndaele, Jean Jacques
2014-12-01
For the evaluation of sensory innervation, normative data are necessary as a comparison. To compare our current perception thresholds (CPTs) with normative data from other research. Healthy volunteers were assessed for 2000, 250, and 5 Hz CPTs of the median and pudendal nerve and data were compared with other studies. Normative data in the studied group n = 41 (male: 21; female: 20) for the median nerve, 2 kHz, 250 Hz, and 5 Hz were respectively: 241.85 ± 67.72 (140-444); 106.27 ± 39.12 (45-229); 82.05 ± 43.40 (13-271). Pudendal nerve CPTs 250 Hz were: 126.44 ± 69.46 (6-333). For men 2 kHz: 349.95 ± 125.76 (100-588); 5 Hz: 132.67 ± 51.81 (59-249) and women 2 kHz:226.20 ± 119.65 (64-528); 5 Hz: 92.45 ± 44.66 (35-215). For the median nerve no statistical differences for gender were shown. For the pudendal nerve, only 250 Hz showed no difference for gender (t-test: 0.516). Comparison of our data with CPTs of other normative data showed no agreement for the pudendal nerve. For the median nerve only 2 kHz showed agreement in three studies and for 5 Hz with one study. Comparing normative data of multiple studies shows a variety of results and poor agreement. Therefore, referring to normative data of other studies should be handled with caution.
Continuation versus discontinuation of oxytocin in the active phase of labour
DEFF Research Database (Denmark)
Bor, Isil Pinar; Ledertoug, Susanne; Boie, Sidsel
2016-01-01
. POPULATION: Women with singleton pregnancy in the vertex position undergoing labour induction or augmentation. METHODS: Two hundred women were randomised when cervical dilation was ≤4 cm to either continue or discontinue oxytocin infusion when cervical dilation reached 5 cm. MAIN OUTCOME MEASURES......, and neonatal outcomes. RESULTS: The active phase of labour was longer by 41 minutes (95% confidence interval 11-75 minutes) in the discontinued group (median 125 minutes in 85 women who had reached the active phase and delivered vaginally) versus the continued group (median 88 minutes in 78 women......OBJECTIVE: To investigate whether discontinuation of oxytocin infusion increases the duration of the active phase of labour and reduces maternal and neonatal complications. DESIGN: Randomised controlled trial. SETTING: Department of Obstetrics and Gynaecology, Regional Hospital of Randers, Denmark...
Neutron small-angle scattering study of phase decomposition in Au-Pt
International Nuclear Information System (INIS)
Singhal, S.P.; Herman, H.
1978-01-01
Isothermal decomposition of a Au-60 at.% Pt alloy, quenched from the solid as well as the liquid state, has been studied with the D11 neutron small-angle scattering spectrometer at ILL, Grenoble. An incident neutron wavelength of 6.7 A was used and measurements were carried out in the range of scattering vector [β=4π sin theta/lambda] from 2.8x10 -2 to 21x10 -2 A -1 . The preliminary results indicate that decomposition of this alloy at 550 0 C takes place by a spinodal mode, although deviations were observed from linear spinodal theory, even at very early times. Slower aging kinetics were observed in liquid-quenched alloy as compared with solid-quenched. Liquid quenching is more efficient in suppressing quench clustering than is solid quenching. However, liquid quenching yields an extremely fine-grained material, which thereby enhances discontinuous precipitation at grain boundaries, competing with decomposition in the bulk. A Rundman-Hilliard analysis was used for the early stages of the spinodal reaction to obtain an interdiffusion coefficient of the order of 10 -16 cm 2 s -1 at 550 0 C for the solid-quenched alloy. (Auth.)
Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning
Tahir, Bilal A.; Bragg, Chris M.; Wild, Jim M.; Swinscoe, James A.; Lawless, Sarah E.; Hart, Kerry A.; Hatton, Matthew Q.; Ireland, Rob H.
2017-09-01
To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3% p = 0.04) and 0.2% (range: 0 to 4.1%; p = 0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.
In uncertainty we trust: a median voter model with risk aversion
Directory of Open Access Journals (Sweden)
Pavel A. Yakovlev
2011-12-01
Full Text Available The principal-agent problem and uncertainty are some of the key factors affecting financial and political markets. Fear of the unknown plays an important role in human decision making, including voting. This article describes a theoretical model where voter risk aversion towards uncertainty gives political incumbents a significant advantage over their challengers, exacerbating the principal-agent problem between voters and legislators. The model presented predicts that a rise in voter uncertainty concerning the challenger allows the incumbent to deviate from the median voter’s policy preference without losing the election. This model reconciles the paradoxical coexistence of ideological shirking and high incumbent reelection rates without abandoning the elegant median voter framework.
Sosiaalisen median kehittäminen pk-yrityksissä Töpseli-verkoston avulla
Palander, Laura
2010-01-01
Tämän opinnäytetyön tarkoituksena oli selvittää, minkälaisena mahdollisuutena pk-yrittäjät kokevat sosiaalisen median ja miten he ymmärtävät sen. Läntisellä Uudellamaalla toimivia yrityksiä on osallistunut Laurea-ammattikorkeakoulun Lohjan toimipisteen Töpseli-verkostoon. Verkoston tarkoituksena on vahvistaa länsi Uudellamaalla toimivien pk-yritysten kilpailukykyä, parantamalla yrittäjien ymmärrystä sosiaalisen median tarjoamista mahdollisuuksista. Työtä varten selvitettiin myös ammattikorkea...
Ruggiu, Mathilde; Oberkampf, Florence; Ghez, David; Cony-Makhoul, Pascale; Beckeriche, Florence; Cano, Isabelle; Taksin, Anne L; Benbrahim, Omar; Ghez, Stéphanie; Farhat, Hassan; Rigaudeau, Sophie; de Gunzburg, Noémie; Lara, Diane; Terre, Christine; Raggueneau, Victoria; Garcia, Isabel; Spentchian, Marc; De Botton, Stéphane; Rousselot, Philippe
2017-11-28
Although the tyrosine kinase inhibitor (TKI) era has brought great improvement in outcome in chronic myelogenous leukemia (CML), prognosis of accelerated phase or myeloid blast crisis patients or of de novo Philadelphia chromosome-positive acute myeloid leukemia remains poor. We conducted a retrospective study on patients with advanced phase disease treated with a TKI and azacytidine. Sixteen patients were eligible. Median age was 64.9 years, the median number of previous therapies was 2.5 lines, and median follow-up was 23.1 months. Hematologic response (HR) rate was 81.3%. Median overall survival (OS), event free survival and relapse-free survival (RFS) were 31.5, 23.3, and 32.2 months, respectively. All except one patient were treated as out-patients after the first cycle. Five patients were bridged to allogenic hematopoietic stem cells transplant. The combination of a TKI and azacytidine is a safe and efficient regiment for patients with CML patients in advanced phases.
Directory of Open Access Journals (Sweden)
Faisal Abdulla AlMarzooqi
2017-02-01
Full Text Available Polyvinylidene fluoride (PVDF is a popular polymer material for making membranes for several applications, including membrane distillation (MD, via the phase inversion process. Non-solvent-induced phase separation (NIPS and vapor-induced phase separation (VIPS are applied to achieve a porous PVDF membrane with low mass-transfer resistance and high contact angle (hydrophobicity. In this work, firstly, the impacts of several preparation parameters on membrane properties using VIPS and NIPS were studied. Then, the performance of the selected membrane was assessed in a lab-scale direct-contact MD (DCMD unit. The parametric study shows that decreasing PVDF concentration while increasing both relative humidity (RH and exposure time increased the contact angle and bubble-point pore size (BP. Those trends were investigated further by varying the casting thickness. At higher casting thicknesses and longer exposure time (up to 7.5 min, contact angle (CA increased but BP significantly decreased. The latter showed a dominant trend leading to liquid entry pressure (LEP increase with thickness.
Hao, Y.; Zong, Q.; Zhou, X.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S.; Spence, H. E.; Blake, J. B.; Reeves, G. D.
2017-12-01
We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90º pitch angle electrons, the phase change of the flux modulations across energy exceeds 180º, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.
International Nuclear Information System (INIS)
Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X. R.
2017-01-01
Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.
Polymer boosting effect in the droplet phase studied by small-angle neutron scattering
Frielinghaus, H; Allgaier, J; Richter, D; Jakobs, B; Sottmann, T; Strey, R
2002-01-01
Small-angle neutron-scattering experiments were performed in order to obtain the six partial scattering functions of a droplet microemulsion containing water, decane, C sub 1 sub 0 E sub 4 surfactant and PEP sub 5 -PEO sub 8 sub 0. We systematically varied the contrast around the polymer contrast, where only the polymer becomes visible, and we also measured bulk and film contrasts. With the singular value decomposition method we could extract the desired six partial scattering functions from the 15 measured spectra. We find a sphere-shell-shell structure of the droplets, where the innermost sphere consists of oil, the middle shell of surfactant and the outer shell is a depletion zone where the polymer is almost not present. (orig.)
DISTRIBUTION OF TWO-PHASE FLOW IN A DISTRIBUTOR
Directory of Open Access Journals (Sweden)
AZRIDJAL AZIZ
2012-02-01
Full Text Available The flow configuration and distribution behavior of two-phase flow in a distributor made of acrylic resin have been investigated experimentally. In this study, air and water were used as two-phase flow working fluids. The distributor consists of one inlet and two outlets, which are set as upper and lower, respectively. The flow visualization at the distributor was made by using a high–speed camera. The flow rates of air and water flowing out from the upper and lower outlet branches were measured. Effects of inclination angle of the distributor were investigated. By changing the inclination angle from vertical to horizontal, uneven distributions were also observed. The distribution of two-phase flow through distributor tends even flow distribution on the vertical position and tends uneven distribution on inclined and horizontal positions. It is shown that even distribution could be achieved at high superficial velocities of both air and water.
Díliz-Nava, Héctor; Meléndez-Sagaón, Isis; Tamaríz-Cruz, Orlando; García-Benítez, Luis; Araujo-Martínez, Aric; Palacios-Macedo, Alexis
To establish the morbidity and mortality of patients with univentricular hearts who underwent a repeat median sternotomy at the Instituto Nacional de Pediatría. A retrospective review was performed on the clinical charts of all patients who underwent a repeat median sternotomy from 2001 to 2016. Sixty-five patients underwent 76 surgeries by repeat median sternotomy. Fifty-nine patients had a first repeat median sternotomy, with a mean age of 36 months (range: 4-176 months) and a mean weight of 12.2 kg (range: 3.2-21.5 kg). Forty patients had a Glenn procedure, and 19 patients had a Fontan procedure. There were 17 patients with a second repeat median sternotomy, with a mean age of 89 months (range 48-156 months), and a mean weight of 22.7 kg (14.4-41 kg). A Fontan procedure was performed on all these 17 patients. A section of the right coronary artery with electrocardiographic changes and a right atrium tear that caused hypotension occurred during first repeat sternotomy. An aortic tear occurred during a second repeat sternotomy with massive bleeding and subsequent death. This represents 3.9% of re-entry injuries. It is concluded that repeat median sternotomy is a safe procedure. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.
Substorm onset location and dipole tilt angle
Directory of Open Access Journals (Sweden)
J. Wanliss
2006-03-01
Full Text Available From an initial data set of over 200 substorms we have studied a subset of 30 magnetospheric substorms close to magnetic midnight to investigate, in a statistical fashion, the source region of the auroral arc that brightens at the onset of expansive phase. This arc is usually identified as the ionospheric signature of the expansive phase onset that occurs in the magnetotail. All the substorm onsets were identified via ground-based magnetometer and photometer data from the CANOPUS array. Various Tsyganenko global magnetic field models were used to map magnetic field lines from the location of the onset arc out to its greatest radial distance in the magnetotail. The results appear to favour the current disruption model of substorms since the average onset location has an average of 14.1 Earth radii (RE and is therefore more consistent with theories that place the onset location in the inner magnetotail. For the narrow range of tilts available our modeling indicates the parameter that appears to strongly influence the location of the substorm onset is the dipole tilt angle; as tilt becomes less negative onsets occur further downtail.
A Rank Test on Equality of Population Medians
Pooi Ah Hin
2012-01-01
The Kruskal-Wallis test is a non-parametric test for the equality of K population medians. The test statistic involved is a measure of the overall closeness of the K average ranks in the individual samples to the average rank in the combined sample. The resulting acceptance region of the test however may not be the smallest region with the required acceptance probability under the null hypothesis. Presently an alternative acceptance region is constructed such that it has the smallest size, ap...
Tessier Number 30 Median Mandibular Cleft With Congenital Heart Anomalies in Qena, Egypt.
Ali, Ahmed Ali Abdelrahim
2018-01-01
Median cleft deformities of the lower lip and mandible are very rare congenital anomalies. Our patient had median cleft of the lower lip, mandible, and the chin with tongue duplication, ankyloglossia, and cleft strap muscles with 2 neck contracture bands. This anomaly was associated with congenital heart disease transposition of great vessels, large ventricular septal defect, and severe pulmonary stenosis. Early repair was done at 6 months to improve feeding.
International Nuclear Information System (INIS)
Ozolins, V.; Wolverton, C.; Zunger, A.
1998-01-01
Epitaxial strain energies of epitaxial films and bulk superlattices are studied via first-principles total-energy calculations using the local-density approximation. Anharmonic effects due to large lattice mismatch, beyond the reach of the harmonic elasticity theory, are found to be very important in Cu/Au (lattice mismatch 12%), Cu/Ag (12%), and Ni/Au (15%). We find that left-angle 001 right-angle is the elastically soft direction for biaxial expansion of Cu and Ni, but it is left-angle 201 right-angle for large biaxial compression of Cu, Ag, and Au. The stability of superlattices is discussed in terms of the coherency strain and interfacial energies. We find that in phase separating systems such as Cu-Ag the superlattice formation energies decrease with superlattice period, and the interfacial energy is positive. Superlattices are formed easiest on (001) and hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the formation energy of superlattices increases with period, and interfacial energies are negative. These superlattices are formed easiest on (001) or (110) and hardest on (111) substrates. For Ni-Au we find a hybrid behavior: superlattices along left-angle 111 right-angle and left-angle 001 right-angle behave like phase separating systems, while for left-angle 110 right-angle they behave like ordering systems. Finally, recent experimental results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys, immiscible in the bulk form, are explained in terms of destabilization of the phase separated state due to lattice mismatch between the substrate and constituents. copyright 1998 The American Physical Society
Optically Controlled Phased Array Antenna
National Research Council Canada - National Science Library
Garafalo, David
1998-01-01
.... The antenna is a 3-foot by 9 foot phased array capable of a scan angle of 120 degrees. The antenna was designed to be conformal to the cargo door of a large aircraft and is designed to operate in the frequency range of 830 - 1400 MHz with a 30...
Evaluation of a non-proprietary, high-tension, four-cable median barrier on level terrain.
2012-11-01
During the last decade, the use of cable median barriers has risen dramatically. Cable barriers are often utilized in depressed medians : with widths ranging from 30 to 50 ft (9.1 to 15.2 m) and with fill slopes as steep as 4H:1V. A careful review of...
A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections
International Nuclear Information System (INIS)
Zhang, You; Yin, Fang-Fang; Ren, Lei; Segars, W. Paul
2013-01-01
Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and “ground-truth” onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)/COMS (±S.D.) between lesions in prior images and “ground-truth” onboard images were 136.11% (±42.76%)/15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD/COMS between the lesion
Thermal behavior variations in coating thickness using pulse phase thermography
Energy Technology Data Exchange (ETDEWEB)
Ranjit, Shrestha; Chung, Yoonjae; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)
2016-08-15
This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was used to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.
Small angle neutron and x-ray scattering studies of self-assembled nano structured materials
International Nuclear Information System (INIS)
Choi, Sung Min
2009-01-01
Full text: Small angle neutron and x-ray scattering are very powerful techniques to investigate nano structured materials. In this presentation, examples of nano structured materials investigated by neutron and x-ray scattering will be presented. Part I: The unique anisotropic physical properties of columnar discotic liquid crystals (DLCs) have attracted considerable interest for their potential applications as electronic devices. For many practical applications, however, it is crucial to obtain uniaxially oriented and highly ordered columnar superstructures of DLC molecules covering macroscopic area. Here, we present a simple and straight-forward approach to fabricate uniaxially oriented and highly ordered columnar superstructures of cobalt octa(n-decylthio) porphyrazine (CoS 1 0), a discotic supra-molecule, in bulk and on substrates [1] over a macroscopic length scale, utilizing an applied magnetic field and the interaction of CoS 1 0 with an OTS-functionalized substrate. The details of the oriented and ordered columnar nano-structures are investigated by SANS and GISAXS. Part II: Self-assembly of one-dimensional (1D) nanoparticles with metallic or semiconducting properties into highly ordered superstructures using various interactions has been of great interest as a route towards materials with new functionalities. Here, we report a new phase diagram of negatively charged 1D nanoparticle (cROD) and cationic liposome (CL) complexes in water which exhibit three different highly ordered phases [2]. Small angle neutron and x-ray scattering measurements show that the cROD-CL complexes exhibit three different highly ordered phases, intercalated lamellar, doubly intercalated lamellar and centered rectangular phases, depending on particle curvature and electrostatic interactions. The new phase diagram can be used to understand and design new highly ordered self-assemblies of 1D nanoparticles in soft matter which provide new functionalities. (author)
Energy Technology Data Exchange (ETDEWEB)
Waseem, Muhammad; Irfan, Muhammad [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Qamar, Shahid, E-mail: shahid_qamar@pieas.edu.pk [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)
2012-07-15
In this paper, we propose a scheme to realize three-qubit quantum phase gate of one qubit simultaneously controlling two target qubits using four-level superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. The two lowest levels Divides 0 Right-Pointing-Angle-Bracket and Divides 1 Right-Pointing-Angle-Bracket of each SQUID are used to represent logical states while the higher energy levels Divides 2 Right-Pointing-Angle-Bracket and Divides 3 Right-Pointing-Angle-Bracket are utilized for gate realization. Our scheme does not require adiabatic passage, second order detuning, and the adjustment of the level spacing during gate operation which reduce the gate time significantly. The scheme is generalized for an arbitrary n-qubit quantum phase gate. We also apply the scheme to implement three-qubit quantum Fourier transform.
New England observed and predicted median July stream/river temperature points
U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted median July stream/river temperatures in New England based on a spatial statistical network...
New England observed and predicted median August stream/river temperature points
U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted median August stream/river temperatures in New England based on a spatial statistical network...
Observation of the geometric phase using photon echoes
International Nuclear Information System (INIS)
Tian, Mingzhen; Reibel, Randy R.; Barber, Zeb W.; Fischer, Joe A.; Babbitt, Wm. Randall
2003-01-01
The geometric phase of an atomic system has been observed in V-type three-level barium atoms using photon echoes. The geometric phase results from a cyclic evolution of a two-level subsystem driven by a laser pulse. The phase change is observed on the echo field produced on a different subsystem that is coupled via the ground state to the driven subsystem. The measured geometric phase was half of the solid angle subtended by the Bloch vector along the driven evolution circuit. This evolution has the potential to form universal operations of quantum bits
Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
Ba, Yan; Liu, Haihu; Sun, Jinju; Zheng, Rongye
2013-10-01
Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.
Chapter 5: Modeling and Control of Three-Phase AC/DC Converter Including Phase-Locked Loop
DEFF Research Database (Denmark)
Zhou, Dao; Song, Yipeng; Blaabjerg, Frede
2018-01-01
In this chapter, a mathematical model of the power circuit of a three-phase AC/DC converter is developed in the stationary and synchronous reference frames. Then, the operation principle of the phasor locked loop is addressed to exact the angle information of the power grid to realize the accurat...
A lattice determination of gA and left angle x right angle from overlap fermions
International Nuclear Information System (INIS)
Guertler, M.; Schiller, A.; Streuer, T.; Freie Univ. Berlin
2004-10-01
We present results for the nucleon's axial charge g A and the first moment left angle x right angle of the unpolarized parton distribution function from a simulation of quenched overlap fermions. (orig.)
International Nuclear Information System (INIS)
Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung
2014-01-01
A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination. Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ 1 and ϕ 2 ) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ DS list as a criterion to select optimized phases ϕ am from ϕ 1 or ϕ 2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕ SAD has been developed. Based on this work, reflections with an angle θ DS in the range 35–145° are selected for an optimized improvement, where θ DS is the angle between the initial phase ϕ SAD and a preliminary density-modification (DM) phase ϕ DM NHL . The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination
Parry, Joshua A; Barrett, Ian; Schoch, Bradley; Yuan, Brandon; Cass, Joseph; Cross, William
2018-04-01
To determine whether fixation of pertrochanteric hip fractures with cephalomedullary nails (CMNs) with a neck-shaft angle (NSA) less than the native NSA affects reduction and lag screw cutout. Retrospective comparative study. Level I trauma center. Patients treated with a CMN for unstable pertrochanteric femur fractures (OTA/AO 31-A2.2 and 31-A2.3) between 2005 and 2014. CMN fixation. NSA reduction and lag screw cutout. Patients fixed with a nail angle less than their native NSA were less likely to have good reductions [17% vs. 60%, 95% confidence interval (CI), -63% to -18%; P = 0.0005], secondary to more varus reductions (41% vs. 10%, 95% CI, 9%-46%; P = 0.01) and more fractures with ≥4 mm of displacement (63% vs. 35%, 95% CI, 3%-49%; P = 0.03). The cutout was not associated with the use of a nail angle less than the native NSA (60% vs. 76%, 95% CI, -56% to 18%; P = 0.5), varus reductions (60% vs. 32%, 95% CI, -13% to 62%; P = 0.3), or poor reductions (20% vs. 17%, 95% CI, -24% to 44%; P = 1.0). The fixation of unstable pertrochanteric hip fractures with a nail angle less than the native NSA was associated with more varus reductions and fracture displacement but did not affect the lag screw cutout. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
Stochastic inflation: Quantum phase-space approach
International Nuclear Information System (INIS)
Habib, S.
1992-01-01
In this paper a quantum-mechanical phase-space picture is constructed for coarse-grained free quantum fields in an inflationary universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase-space quantum distribution function are found for the cases of power-law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field-theoretic results (we do not restrict ourselves only to left-angle Φ 2 right-angle). Fair agreement is found provided the coarse-graining scale is kept within certain limits. By focusing on the full phase-space distribution function rather than a reduced distribution it is shown that the thermodynamic interpretation of the stochastic formalism faces several difficulties (e.g., there is no fluctuation-dissipation theorem). The coarse graining does not guarantee an automatic classical limit as quantum correlations turn out to be crucial in order to get results consistent with standard quantum field theory. Therefore, the method does not by itself constitute an explanation of the quantum to classical transition in the early Universe. In particular, we argue that the stochastic equations do not lead to decoherence
Growth and properties of the CuInS2 thin films produced by glancing angle deposition
International Nuclear Information System (INIS)
Akkari, F. Chaffar; Kanzari, M.; Rezig, B.
2008-01-01
We use the glancing angle deposition technique (GLAD) to grow CuInS 2 thin films by a vacuum thermal method onto glass substrates. During deposition, the substrate temperature was maintained at 200 deg. C. Due to shadowing effect the oblique angle deposition technique can produce nanorods tilted toward the incident deposition flux. The evaporated atoms arrive at the growing interface at a fixed angle θ measured from the substrate normal. The substrate is rotated with rotational speed ω fixed at 0.033 rev s -1 . We show that the use of this growth technique leads to an improvement in the optical properties of the films. Indeed high absorption coefficients (10 5 -3.10 5 cm -1 ) in the visible range and near-IR spectral range are reached. In the case of the absence of the substrate rotation, scanning electron microscopy pictures show that the structure of the resulting film consists of nanocolumns that are progressively inclined towards the evaporation source as the incident angle was increased. If a rapid azimuthal rotation accompanies the substrate tilt, the resulting nanostructure is composed of an array of pillars normal to the substrate. The surface morphology show an improvement without presence of secondary phases for higher incident angles (θ > 60 deg.)
The mean, the median, and the St. Petersburg paradox.
Hayden, Benjamin Y; Platt, Michael L
2009-06-01
The St. Petersburg Paradox is a famous economic and philosophical puzzle that has generated numerous conflicting explanations. To shed empirical light on this phenomenon, we examined subjects' bids for one St. Petersburg gamble with a real monetary payment. We found that bids were typically lower than twice the smallest payoff, and thus much lower than is generally supposed. We also examined bids offered for several hypothetical variants of the St. Petersburg Paradox. We found that bids were weakly affected by truncating the gamble, were strongly affected by repeats of the gamble, and depended linearly on the initial "seed" value of the gamble. One explanation, which we call the median heuristic , strongly predicts these data. Subjects following this strategy evaluate a gamble as if they were taking the median rather than the mean of the payoff distribution. Finally, we argue that the distribution of outcomes embodied in the St. Petersburg paradox is so divergent from the Gaussian form that the statistical mean is a poor estimator of expected value, so that the expected value of the St. Petersburg gamble is undefined. These results suggest that this classic paradox has a straightforward explanation rooted in the use of a statistical heuristic.
No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.
Gibson, W; Campbell, A; Allison, G
2013-09-01
Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.
Median and ulnar neuropathies in U.S. Army Medical Command Band members.
Shaffer, Scott W; Koreerat, Nicholas R; Gordon, Lindsay B; Santillo, Douglas R; Moore, Josef H; Greathouse, David G
2013-12-01
Musicians have been reported as having a high prevalence of upper-extremity musculoskeletal disorders, including carpal tunnel syndrome. The purpose of this study was to determine the presence of median and ulnar neuropathies in U.S. Army Medical Command (MEDCOM) Band members at Fort Sam Houston, Texas. Thirty-five MEDCOM Band members (30 males, 5 females) volunteered to participate. There were 33 right-handed musicians, and the mean length of time in the MEDCOM Band was 12.2 yrs (range, 1-30 yrs). Subjects completed a history form, were interviewed, and underwent a physical examination of the cervical spine and bilateral upper extremities. Nerve conduction studies of the bilateral median and ulnar nerves were performed. Electrophysiological variables served as the reference standard for median and ulnar neuropathy and included distal sensory latencies, distal motor latencies, amplitudes, conduction velocities, and comparison study latencies. Ten of the 35 subjects (29%) presented with abnormal electrophysiologic values suggestive of an upper extremity mononeuropathy. Nine of the subjects had abnormal median nerve electrophysiologic values at or distal to the wrist; 2 had bilateral abnormal values. One had an abnormal ulnar nerve electrophysiologic assessment at the elbow. Nine of these 10 subjects had clinical examination findings consistent with the electrophysiological findings. The prevalence of mononeuropathies in this sample of band members is similar to that found in previous research involving civilian musicians (20-36%) and far exceeds that reported in the general population. Prospective research investigating screening, examination items, and injury prevention measures in musicians appears to be warranted.
PROJECTIONS OF DORSAL AND MEDIAN RAPHE NUCLEI TO DORSAL AND VENTRAL STRIATUM
Directory of Open Access Journals (Sweden)
G. R. Hassanzadeh G. Behzadi
2007-08-01
Full Text Available The ascending serotonergic projections are derived mainly from mesencephalic raphe nuclei. Topographical projections from mesencephalic raphe nuclei to the striatum were examined in the rat by the retrograde transport technique of HRP (horseradish peroxidase. In 29 rats stereotaxically injection of HRP enzyme were performed in dorsal and ventral parts of striatum separately. The extent of the injection sites and distribution of retrogradely labeled neuronal cell bodies were drawed on representative sections using a projection microscope. Following ipsilateral injection of HRP into the dorsal striatum, numerous labeled neurons were seen in rostral portion of dorsal raphe (DR nucleus. In the same level the cluster of labeled neurons were hevier through caudal parts of DR. A few neurons were also located in lateral wing of DR. More caudally some labeled neurons were found in lateral, medial line of DR. In median raphe nucleus (MnR the labeled neurons were scattered only in median portion of this nucleus. The ipsilateral injection of HRP into the ventral region of striatum resulted on labeling of numerous neurons in rostral, caudal and lateral portions of DR. Through the caudal extension of DR on 4th ventricle level, a large number of labeled neurons were distributed along the ventrocaudal parts of DR. In MnR, labeled neurons were observed only in median part of this nucleus. These findings suggest the mesencephalic raphe nuclei projections to caudo-putamen are topographically organized. In addition dorsal and median raphe nuclei have a stronger projection to the ventral striatum.
Pancharatnam geometric phase originating from successive partial ...
Indian Academy of Sciences (India)
Pancharatnam connection [1,2] dictates that ψp is in phase ψ0. The partial projection effects a ... up to a real multiplier. Here again, ψf is in phase with ψp but relative to ψ0, has a .... For the third partial projection of strength t3 and an azimuth angle φ13 to effect a triangle closure for both initial states |z〉 and | − z〉, we derive ...
Song, Sung-Jin; Kim, Chang-Hwan
2002-05-01
Phased array transducers are quite often mounted on solid wedges with specific angles in many practical ultrasonic inspections of thin plates phased array techniques with testing set-up, it is essential to have thorough understanding on the characteristics of radiation beam pattern produced in the interrogated medium. To address such a need, this paper proposes a systematic way to calculate full 3-D radiation beam patterns produced in the interrogated solid medium by phased array transducers mounted on a solid wedge. In order to investigate the characteristics of radiation beam patterns in steel, simulation is carried out for 7.5 MHz array transducers mounted on an acrylic wedge with the angle of 15.45 degrees with various of steering angles and/or focal planes.
Lu, Jianing; Fu, Songnian; Tang, Haoyuan; Xiang, Meng; Tang, Ming; Liu, Deming
2017-01-01
Low complexity carrier phase recovery (CPR) scheme based on vertical blind phase search (V-BPS) for M-ary offset quadrature amplitude modulation (OQAM) is proposed and numerically verified. After investigating the constellations of both even and odd samples with respect to the phase noise, we identify that the CPR can be realized by measuring the verticality of constellation with respect to different test phase angles. Then measurement without multiplication in the complex plane is found with low complexity. Furthermore, a two-stage configuration is put forward to further reduce the computational complexity (CC). Compared with our recently proposed modified blind phase search (M-BPS) algorithm, the proposed algorithm shows comparable tolerance of phase noise, but reduces the CC by a factor of 3.81 (or 3.05) in the form of multipliers (or adders), taking the CPR of 16-OQAM into account.
Oil Slick Observation at Low Incidence Angles in Ku-Band
Panfilova, M. A.; Karaev, V. Y.; Guo, Jie
2018-03-01
On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.
Ten helical twist angles of B-DNA
Energy Technology Data Exchange (ETDEWEB)
Kabsch, W; Sander, C; Trifonov, E N
1982-01-01
On the assumption that the twist angles between adjacent base-pairs in the DNA molecule are additive a linear system of 40 equations was derived from experimental measurements of the total twist angles for different pieces of DNA of known sequences. This system of equations is found to be statistically consistent providing a solution for all ten possible twist angles of B-DNA by a least squares fitting procedure. Four of the calculated twist angles were not known before. The other six twist angles calculated are very close to the experimentally measured ones. The data used were obtained by the electrophoretic band-shift method, crystallography and nuclease digestion of DNA adsorbed to mica or Ca-phosphate surface. The validity of the principle of additivity of the twist angles implies that the angle between any particular two base-pairs is a function of only these base-pairs, independent of nearest neighbors.
Digitaalisen markkinoinnin ja sosiaalisen median hyödyntäminen kampaamoalalla : Pienyritykset
Myllymäki, Hanna
2016-01-01
Tämän opinnäytetyön aiheena oli digitaalisen markkinoinnin ja sosiaalisen median hyödyntäminen kampaamoalalla, erityisesti pienissä yrityksissä. Tavoitteena oli opastaa lukijaa ymmärtämään digitaalisen markkinoinnin ja sosiaalisen median keskeisimmät perusteet ja antaa neuvoja parturi-kampaamoalan yrittäjälle, joka ei ole vielä huomioinut tai osannut hyödyntää niiden työkaluja. Työn teoriaosuudessa käsiteltiin mitä markkinointiviestintä on ja mitä sosiaalisen media on. Tämän lisäksi käsit...
DEFF Research Database (Denmark)
Eriksson, Robert
2014-01-01
The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers...... by the multiterminal dc grid can, by proper control action, enhance this stability. This paper proposes a new time optimal control strategy for the injected power of multiterminal dc grids to enhance the rotor-angle stability. The controller is time optimal, since it reduces the impact of a disturbance as fast...
Effects of surface roughness on deviation angle and performance losses in wet steam turbines
International Nuclear Information System (INIS)
Bagheri Esfe, H.; Kermani, M.J.; Saffar Avval, M.
2015-01-01
In this paper, effects of turbine blade roughness and steam condensation on deviation angle and performance losses of the wet stages are investigated. The steam is assumed to obey non-equilibrium thermodynamic model, in which abrupt formation of liquid droplets produces condensation shocks. An AUSM-van Leer hybrid scheme is used to solve two-phase turbulent transonic steam flow around turbine rotor tip sections. The dominant solver of the computational domain is taken to be the AUSM scheme (1993) that in regions with large gradients smoothly switches to van Leer scheme (1979). This guarantees a robust hybrid scheme throughout the domain. It is observed that as a result of condensation, the aerothermodymics of the flow field changes. For example for a supersonic wet case with exit isentropic Mach number M e,is = 1.45, the deviation angle and total pressure loss coefficient change by 65% and 200%, respectively, when compared with dry case. It is also observed that losses due to surface roughness in subsonic regions are much larger than those in supersonic regions. Hence, as a practical guideline for maintenance sequences, cleaning of subsonic parts of steam turbines should be considered first. - Highlights: • Two-phase turbulent transonic steam flow is numerically studied in this paper. • As a result of condensation, aerothermodynamics of the flow field changes. • Surface roughness has almost negligible effect on deviation angle. • Surface roughness plays an important role in performance losses. • Contribution of different loss mechanisms for smooth and rough blades are computed.
Surfactant Membrane Phases Containing Mixtures of Hydrocarbon and Fluorocarbon Surfactants
International Nuclear Information System (INIS)
de Campo, Liliana; Warr, G.G.
2005-01-01
Full text: We describe the structure and stability of sponge and lamellar phases comprising mixtures of hydrocarbon and fluorocarbon surfactants. Such mixtures can show limited miscibility with each other, forming for example coexisting populations of hydrocarbon rich and fluorocarbon rich micelles under some circumstances. Our system is based on the well-characterised lamellar and sponge phases of cetylpyridinium chloride, hexanol and 0.2M brine, into which the partially fluorinated surfactant N-1H,1H,2H,2H-tridecafluorooctylpyridinium chloride is incorporated. By probing the structures with SAXS (small angle x-ray scattering) and SANS (small angle neutron scattering) using contrast variation, and by characterizing the dynamic properties with dynamic light scattering, we will describe the effect of incorporating the fluorinated surfactant on the phase equilibria and properties of the surfactant membrane structures. (authors)
Median sep and blink reflex in thyroid diseases.
Oflazoğlu, B; Somay, G; Us, O; Surardamar, A; Tanridağ, T
2006-11-01
Pathological disturbances of thyroid hormones is associated with central and peripheral nervous system disturbances. The aim of this study is to evaluate median nerve stimulated somatosensory evoked potential (SEP) and blink reflex of thyroid patients (hypo and hyperthyroidism). Median SEP was performed in 40 patients (21 with hyperthyroidism and 19 with hypothyroidism). We evaluated the latencies of N9, N11, N13, P9, P11, P14, N20 and P25 waves and the N9-N20, N9-N13, N13-N20 and P14-N20 interpeak latencies. We compared the results of patients with the control group (26 persons). We found that the N20 latency was longer in patients with hyperthyroidism than in the control group and the difference was statistically significant. There was not any statistically significant difference regarding the N9, N11, N13, P9, P11, P14, N20 and P25 latencies and the N9-N20, N9-N13, N13-N20 and P14-N20 interpeak latencies between hypothyroid patients and controls. We performed the blink reflex study in 28 of 40 patients (14 patients with hyperthyroidism and 14 patients with hypothyroidism). Comparing the R1, R2, CR2 (contralateral R2) latencies and durations of the patients and controls, we found that R2 and CR2 duration was shorter in patients with hyperthyroidism. This difference was statistically significant.
Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.
Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin
2015-12-01
To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at
Beam-pointing error compensation method of phased array radar seeker with phantom-bit technology
Directory of Open Access Journals (Sweden)
Qiuqiu WEN
2017-06-01
Full Text Available A phased array radar seeker (PARS must be able to effectively decouple body motion and accurately extract the line-of-sight (LOS rate for target missile tracking. In this study, the real-time two-channel beam pointing error (BPE compensation method of PARS for LOS rate extraction is designed. The PARS discrete beam motion principium is analyzed, and the mathematical model of beam scanning control is finished. According to the principle of the antenna element shift phase, both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed, and the effect of BPE caused by phantom-bit technology (PBT on the extraction accuracy of the LOS rate is examined. A compensation method is given, which includes coordinate transforms, beam angle margin compensation, and detector dislocation angle calculation. When the method is used, the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle. The simulation results validate the proposed method.
Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb
Wang, Yazhen; Regel, Liya L.; Wilcox, William R.
2000-01-01
We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.
The resection angle in apical surgery
DEFF Research Database (Denmark)
von Arx, Thomas; Janner, Simone F M; Jensen, Simon S
2016-01-01
OBJECTIVES: The primary objective of the present radiographic study was to analyse the resection angle in apical surgery and its correlation with treatment outcome, type of treated tooth, surgical depth and level of root-end filling. MATERIALS AND METHODS: In the context of a prospective clinical...... study, cone beam computed tomography (CBCT) scans were taken before and 1 year after apical surgery to measure the angle of the resection plane relative to the longitudinal axis of the root. Further, the surgical depth (distance from the buccal cortex to the most lingual/palatal point of the resection...... or with the retrofilling length. CONCLUSIONS: Statistically significant differences were observed comparing resection angles of different tooth groups. However, the angle had no significant effect on treatment outcome. CLINICAL RELEVANCE: Contrary to common belief, the resection angle in maxillary anterior teeth...
Effect of finger motion on transverse median nerve movement in the carpal tunnel.
Kang, Hyo Jung; Yoon, Joon Shik
2016-10-01
We used ultrasonography (US) to investigate the effects of finger motion on movement of the median nerve in patients with carpal tunnel syndrome (CTS) and the correlation between these US parameters and CTS severity. Ultrasonographic measures were performed in 23 control wrists and 22 CTS wrists in women. During first through third finger flexion and grip motion, median nerve movements were obtained using US and a tracing program. Nerve movements during third finger flexion in the dorsopalmar axis and grip motion in both axes, and during second finger flexion in the radioulnar axis, differed significantly between the control and CTS groups. US parameters correlated negatively with cross-sectional area. This study shows that transverse median nerve movements decreased during grip using US and correlated negatively with CTS severity. Muscle Nerve, 2016 Muscle Nerve 54: -, 2016 Muscle Nerve 54: 738-742, 2016. © 2016 Wiley Periodicals, Inc.
Median Arcuate Ligament Syndrome: A Single-Center Experience with 23 Patients
Energy Technology Data Exchange (ETDEWEB)
Nasr, Layla A. [American University of Beirut Medical Center, Division of Interventional Radiology, Department of Radiology (Lebanon); Faraj, Walid G. [American University of Beirut Medical Center, Department of Surgery (Lebanon); Al-Kutoubi, Aghiad [American University of Beirut Medical Center, Division of Interventional Radiology, Department of Radiology (Lebanon); Hamady, Mohamad [Imperial College-London Faculty of Medicine, Division of Interventional Radiology, Department of Radiology (United Kingdom); Khalifeh, Mohamad; Hallal, Ali; Halawani, Hamzeh M. [American University of Beirut Medical Center, Department of Surgery (Lebanon); Wazen, Joelle; Haydar, Ali A., E-mail: ah24@aub.edu.lb [American University of Beirut Medical Center, Division of Interventional Radiology, Department of Radiology (Lebanon)
2017-05-15
BackgroundMedian arcuate ligament syndrome (MALS) is a rare entity that occurs when the median arcuate ligament of the diaphragm is low-lying, causing a compression to the underlying celiac trunk. We reviewed the vascular changes associated with MALS in an effort to emphasize the seriousness of this disease and the complications that may result.MethodsThis is a retrospective descriptive analysis of 23 consecutive patients diagnosed with MALS between January 1, 2012 and December 31, 2015 at a tertiary medical center. Computed tomographic (CT) scans, medical records, and patient follow-up were reviewed.ResultsThe number of patients included herein was 23. The median age was 56 years (17–83). Sixteen patients (69.6%) had a significant arterial collateral circulation. Eleven patients (47.8%) were found to have visceral artery aneurysms; 4 patients (36.4%) bled secondary to aneurysm rupture. All ruptured aneurysms were treated with endovascular approach. The severity of the hemodynamic changes appears to be greater with complete occlusion,ConclusionsMALS causes pathological hemodynamic changes within the abdominal vasculature. Follow-up is advised for patients who develop a collateral circulation. Resulting aneurysms should preferably be treated when the size ratio approaches three. Treatment of these aneurysms can be done via an endovascular approach coupled with possible celiac artery decompression to restore physiologic blood flow.
Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters
International Nuclear Information System (INIS)
Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae; Jay Guo, L.
2014-01-01
We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2 cm × 2 cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, can have potential for diverse applications ranging from color display devices to the image sensors.
Modified Angle's Classification for Primary Dentition.
Chandranee, Kaushik Narendra; Chandranee, Narendra Jayantilal; Nagpal, Devendra; Lamba, Gagandeep; Choudhari, Purva; Hotwani, Kavita
2017-01-01
This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3-6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.
Case Report: A true median facial cleft (crano-facial dysraphia ...
African Journals Online (AJOL)
Case Report: A true median facial cleft (crano-facial dysraphia, atessier type O) in Bingham University Teaching Hospital, Jos. ... Patient had a multidisciplinary care by the obstetrician, Neonatologist, anesthesiologist and the plastic surgery team who scheduled a soft tissue repair of the upper lip defect, columella and ...
SOSIAALISEN MEDIAN HYÖDYNTÄMINEN KUNTOKESKUS BALANCEN MARKKINOINNISSA
Arvola, Timo
2011-01-01
Tässä opinnäytetyössä oli kyse kehittämistehtävästä. Kehittämistehtävän tarkoitus oli tarkastella voiko Kuntokes-kus Balance hyödyntää sosiaalista mediaa markkinoinnissaan. Empiirisessä osassa on ohje Facebook-sivun luomi-seen. Teorian alussa tarkastellaan sosiaalista mediaa käsitteenä. Sosiaalisesta mediasta käsitteenä siirrytään sosiaalisen median sovelluksiin ja niiden ominaisuuksiin. Sovelluksista käsitellään Facebook, Youtube, Twitter, Wikipedia, blogit, Movescount ja HeiaHeia. ...
Nuorten sosiaalisen median käyttö tiedonhankinnassa
Simolin, Annina
2017-01-01
Opinnäytetyön toimeksiantajana on Hämeen ammattikorkeakoulun strateginen viestintä, joka vastaa muun muassa opiskelijahankinnasta. HAMKilla on tällä hetkellä käytössään useita sosiaalisen median kanavia, ja työllä haluttiin selvittää mistä kanavista ja mitä tietoa nuoret erityisesti hakevat jatko-opintoja suunnitellessaan. Lisäksi haluttiin selvittää miten nuoret haluavat itse olla yhteydessä oppilaitoksiin hakuaikana. Teoriaosiossa on käsitelty nuorten mediakäyttäytymistä sekä useita sosiaal...
International Nuclear Information System (INIS)
Zu, Z.J.; Chen, Y.L.
1988-01-01
Most consider that the structure of Y-Ba- Cu-O and Dy-Ba-Cu-O stable superconductive crystals with high Tc is associated with the right-angled phase. The superconductivity is closely connected with the right-angled character of the crystalline texture; the better the right- angled character, the better the superconductivity. From statistical investigations of examples the authors have discovered that most of the Y-Ba-Cu-O and Dy-Ba-Cu-O superconductivity with high Tc ceramic crystals is in the monoclinic phase, which, consists of microscopic, lamellar, single twins. The long-columnar grains consisting of lamellar twin slabs show the optical characteristics of right-angled phase. The microscopic twinning and grain morphologies are summarized in this paper
Nucleation of small angle boundaries
CSIR Research Space (South Africa)
Nabarro, FRN
1996-12-01
Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...
Hong's grading for evaluating anterior chamber angle width.
Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul
2012-11-01
To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.
A phase quantification method based on EBSD data for a continuously cooled microalloyed steel
Energy Technology Data Exchange (ETDEWEB)
Zhao, H.; Wynne, B.P.; Palmiere, E.J., E-mail: e.j.palmiere@sheffield.ac.uk
2017-01-15
Mechanical properties of steels depend on the phase constitutions of the final microstructures which can be related to the processing parameters. Therefore, accurate quantification of different phases is necessary to investigate the relationships between processing parameters, final microstructures and mechanical properties. Point counting on micrographs observed by optical or scanning electron microscopy is widely used as a phase quantification method, and different phases are discriminated according to their morphological characteristics. However, it is difficult to differentiate some of the phase constituents with similar morphology. Differently, for EBSD based phase quantification methods, besides morphological characteristics, other parameters derived from the orientation information can also be used for discrimination. In this research, a phase quantification method based on EBSD data in the unit of grains was proposed to identify and quantify the complex phase constitutions of a microalloyed steel subjected to accelerated coolings. Characteristics of polygonal ferrite/quasi-polygonal ferrite, acicular ferrite and bainitic ferrite on grain averaged misorientation angles, aspect ratios, high angle grain boundary fractions and grain sizes were analysed and used to develop the identification criteria for each phase. Comparing the results obtained by this EBSD based method and point counting, it was found that this EBSD based method can provide accurate and reliable phase quantification results for microstructures with relatively slow cooling rates. - Highlights: •A phase quantification method based on EBSD data in the unit of grains was proposed. •The critical grain area above which GAM angles are valid parameters was obtained. •Grain size and grain boundary misorientation were used to identify acicular ferrite. •High cooling rates deteriorate the accuracy of this EBSD based method.
Contact angle hysteresis on superhydrophobic stripes.
Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I
2014-08-21
We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.
Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces
International Nuclear Information System (INIS)
Cheung, F.B.; Epstein, M.
1985-01-01
The behavior of a two-phase gas bubble liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined
Fast and Sensitive Interferon-γ Assay Using Supercritical Angle Fluorescence
Directory of Open Access Journals (Sweden)
Stefan Seeger
2013-02-01
Full Text Available We present an immunoassay for Interferon-γ (IFN-γ with a limit of detection of 1.9 pM (30 pg/mL and a linear concentration range spanning three orders of magnitude. The developed one-step assay takes only 12 min and can replace the time-consuming and labor-intensive enzyme-linked immunosorbent assay (ELISA. The solid-phase sandwich assay is performed on a new measurement system comprising single-use test tubes and a compact fluorescence reader. The polymer tubes contain an optical configuration for the detection of supercritical angle fluorescence, allowing for highly sensitive real-time binding measurements.
Zhang, Yawei; Yin, Fang-Fang; Zhang, You; Ren, Lei
2017-05-01
The purpose of this study is to develop an adaptive prior knowledge guided image estimation technique to reduce the scan angle needed in the limited-angle intrafraction verification (LIVE) system for 4D-CBCT reconstruction. The LIVE system has been previously developed to reconstruct 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the 4D-CBCT images for faster intrafraction verification. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on kV-MV projections acquired in extremely limited angle (orthogonal 3°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of the respiratory motion. The 4D digital extended-cardiac-torso (XCAT) phantom and a CIRS 008A dynamic thoracic phantom were used to evaluate the effectiveness of this technique. The reconstruction accuracy of the technique was evaluated by calculating both the center-of-mass-shift (COMS) and 3D volume-percentage-difference (VPD) of the tumor in reconstructed images and the true on-board images. The performance of the technique was also assessed with varied breathing signals against scanning angle, lesion size, lesion location, projection sampling interval, and scanning direction. In the XCAT study, using orthogonal-view of 3° kV and portal MV projections, this technique achieved an average tumor COMS/VPD of 0.4 ± 0.1 mm/5.5 ± 2.2%, 0.6 ± 0.3 mm/7.2 ± 2.8%, 0.5 ± 0.2 mm/7.1 ± 2.6%, 0.6 ± 0.2 mm/8.3 ± 2.4%, for baseline drift, amplitude variation, phase shift, and patient breathing signal variation
Median survival time of patients after transcatheter chemo-embolization for hepatocellular carcinoma
International Nuclear Information System (INIS)
Haider, Z.; Haq, T.; Munir, K.; Usman, M.U.; Azeemuddin, M.
2006-01-01
Objective: To determine the effect on survival after trans arterial chemo embolization (TACE) in patients with unresectable hepatocellular carcinoma (HCC). Design: Longitudinal cohort study. Place and Duration of Study: Radiology Department, The Aga Khan University Hospital, Stadium Road, Karachi, from December 1997 to September 2005. Patients and Methods: Patients undergoing TACE procedure for HCC were prospectively followed. Forty three patients were enrolled from December 1997 to March 2003 in the study and subjected to chemo embolization therapy. Eight out of 43 patients were excluded from the study, who lost to follow-up. All the patients were followed till their death. Median and mean survival were calculated. Results: The median survival of these 35 patients was 410 days (13.6 months), with 95% confidence interval (236 days lower bound and 536 days upper bound). Mean survival time was 603 days (20.1 months) with 95% confidence interval (394 days lower bound and 812 days upper bound). There was significant difference in mean survival time (in days) by Child's Pugh class (X2 = 12.384; df=2, p-value=0.002). Conclusion: The study showed that TACE is an effective palliative treatment. TACE increases the median survival time. (author)
Alevizos, Evangelos; Snellen, Mirjam; Simons, Dick; Siemes, Kerstin; Greinert, Jens
2018-06-01
This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa >0.7) with the Bayesian
Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay
2015-10-01
New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.
Sensitive singular-phase optical detection without phase measurements with Tamm plasmons
Boriskina, Svetlana V.; Tsurimaki, Yoichiro
2018-06-01
Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.
Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes
International Nuclear Information System (INIS)
Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun
2006-01-01
A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)
Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Liu, Jinyan; Huang, Yong; Tan, Xiaodi
2017-06-01
The collinear holographic data storage system (CHDSS) is a very promising storage system due to its large storage capacities and high transfer rates in the era of big data. The digital micro-mirror device (DMD) as a spatial light modulator is the key device of the CHDSS due to its high speed, high precision, and broadband working range. To improve the system stability and performance, an optimal micro-mirror tilt angle was theoretically calculated and experimentally confirmed by analyzing the relationship between the tilt angle of the micro-mirror on the DMD and the power profiles of diffraction patterns of the DMD at the Fourier plane. In addition, we proposed a novel chess board sync mark design in the data page to reduce the system bit error rate in circumstances of reduced aperture required to decrease noise and median exposure amount. It will provide practical guidance for future DMD based CHDSS development.
Thapa, S.S.; Paudyal, I.; Khanal, S.; Paudel, N.; van Rens, G.H.M.B.
2011-01-01
Purpose. To compare the anterior chamber depth (ACD) and axial length of eyes in a population-based sample among normal, occludable angle, and primary angle-closure glaucoma (PACG) groups. Methods. Totally, 3979 subjects from a population-based glaucoma prevalence study underwent complete ocular
Pump induced normal mode splittings in phase conjugation in a Kerr ...
Indian Academy of Sciences (India)
Abstract. Phase conjugation in a Kerr nonlinear waveguide is studied with counter-propagating normally incident pumps and a probe beam at an arbitrary angle of incidence. Detailed numerical results for the specular and phase conjugated reflectivities are obtained with full account of pump depletion. For sufficient ...
A mathematical model for predicting lane changes using the steering wheel angle.
Schmidt, Kim; Beggiato, Matthias; Hoffmann, Karl Heinz; Krems, Josef F
2014-06-01
Positive safety effects of advanced driver assistance systems can only become effective if drivers accept and use these systems. Early detection of driver's intention would allow for selective system activation and therefore reduce false alarms. This driving simulator study aims at exploring early predictors of lane changes. In total, 3111 lane changes of 51 participants on a simulated highway track were analyzed. Results show that drivers stopped their engagement in a secondary task about 7s before crossing the lane, which indicates a first planning phase of the maneuver. Subsequently, drivers start moving toward the lane, marking a mean steering wheel angle of 2.5°. Steering wheel angle as a directly measurable vehicle parameter appears as a promising early predictor of a lane change. A mathematical model of the steering wheel angle is presented, which is supposed to contribute for predicting lane change maneuvers. The mathematical model will be part of a further predictor of lane changes. This predictor can be a new advanced driver assistance system able to recognize a driver's intention. With this knowledge, other systems can be activated or deactivated so drivers get no annoying and exhausting alarm signals. This is one way how we can increase the acceptance of assistance systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xu, Xiao-Quan; Li, Yan; Hong, Xun-Ning; Wu, Fei-Yun; Shi, Hai-Bin
2017-02-01
To assess the role of whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in differentiating radiological indeterminate vestibular schwannoma (VS) from meningioma in cerebellopontine angle (CPA). Diffusion-weighted (DW) images (b = 0 and 1000 s/mm 2 ) of pathologically confirmed and radiological indeterminate CPA meningioma (CPAM) (n = 27) and VS (n = 12) were retrospectively collected and processed with mono-exponential model. Whole-tumor regions of interest were drawn on all slices of the ADC maps to obtain histogram parameters, including the mean ADC (ADC mean ), median ADC (ADC median ), 10th/25th/75th/90th percentile ADC (ADC 10 , ADC 25 , ADC 75 and ADC 90 ), skewness and kurtosis. The differences of ADC histogram parameters between CPAM and VS were compared using unpaired t-test. Multiple receiver operating characteristic (ROC) curves analysis was used to determine and compare the diagnostic value of each significant parameter. Significant differences were found on the ADC mean , ADC median , ADC 10 , ADC 25 , ADC 75 and ADC 90 between CPAM and VS (all p values Histogram analysis of ADC maps based on whole tumor can be a useful tool for differentiating radiological indeterminate CPAM from VS. The ADC 90 value was the most promising parameter for differentiating these two entities.
Energy Technology Data Exchange (ETDEWEB)
Mason, P.C.; Gaulin, B.D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (CANADA); Epand, R.M. [Department of Biochemistry, McMaster University, Hamilton, Ontario, L8N 3Z5 (CANADA); Wignall, G.D.; Lin, J.S. [Center for Small-Angle Scattering Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
1999-03-01
High-resolution differential scanning calorimetry (DSC) and small angle neutron scattering (SANS) experiments have been conducted on large unilamellar vesicles (LUV{close_quote}s) of the phospholipid dipalmitoylphosphatidylcholine (DPPC) in excess water. The DSC results indicate a phase transition at temperatures corresponding to the gel (L{sub {beta}{sup {prime}}}) to ripple (P{sub {beta}{sup {prime}}}) phase transition seen in multilamellar vesicles of DPPC while the SANS experiments provide direct evidence for the formation of the P{sub {beta}{sup {prime}}} phase in these systems. In addition, it is shown that SANS is an effective technique for extracting structural parameters such as vesicle radius and thickness in LUV model membrane systems. {copyright} {ital 1999} {ital The American Physical Society}
Modified angle's classification for primary dentition
Directory of Open Access Journals (Sweden)
Kaushik Narendra Chandranee
2017-01-01
Full Text Available Aim: This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Methods: Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3–6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Results: Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Conclusions: Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.
Small angle neutron scattering study on a phase separation in a 3-component microemulsion system
International Nuclear Information System (INIS)
Seto, Hideki; Yokoi, Eiji; Komura, Shigehiro; Schwahn, Dietmar; Mortensen, Kell; Suzuki, Junichi; Funahashi, Satoru; Ito, Yuji.
1993-01-01
The mixture of three components, water, n-decane and 2-ethylhexylsulfosuccinate (AOT), is a well-known system that forms a 'water-in-oil' microemulsion at room temperature and decomposes with increasing temperature, thereby being associated with a critical phenomenon. Experimental results in previous literature, indicate that the phenomenon is interpreted to be that of the 3D-Ising, but we obtained the meanfield behavior of the susceptibility at 'near-critical region' by a small angle neutron scattering. The observed spinodal and binodal points were well explained assuming the van der Waals free energy expression. (author)
Glaister, P.
1997-09-01
Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).
The mean, the median, and the St. Petersburg paradox
Directory of Open Access Journals (Sweden)
Benjamin Y. Hayden
2009-06-01
Full Text Available The St.~Petersburg Paradox is a famous economic and philosophical puzzle that has generated numerous conflicting explanations. To shed empirical light on this phenomenon, we examined subjects' bids for one St.~Petersburg gamble with a real monetary payment. We found that bids were typically lower than twice the smallest payoff, and thus much lower than is generally supposed. We also examined bids offered for several hypothetical variants of the St.~Petersburg Paradox. We found that bids were weakly affected by truncating the gamble, were strongly affected by repeats of the gamble, and depended linearly on the initial ``seed'' value of the gamble. One explanation, which we call the extit{median} extit{heuristic}, strongly predicts these data. Subjects following this strategy evaluate a gamble as if they were taking the median rather than the mean of the payoff distribution. Finally, we argue that the distribution of outcomes embodied in the St.~Petersburg paradox is so divergent from the Gaussian form that the statistical mean is a poor estimator of expected value, so that the expected value of the St.~Petersburg gamble is undefined. These results suggest that this classic paradox has a straightforward explanation rooted in the use of a statistical heuristic.
Characteristics of inversion operation on Fermilab phase controlled pulsed power supplies
International Nuclear Information System (INIS)
Trendler, R.C.
1977-01-01
A well known property of phase controlled rectifiers with pulsed inductive loads is the ability to advance firing angles from full rectification (positive voltage) to full inversion (negative voltage). Though these properties have been effectively used in the Main Ring power supplies, they have not been extensively utilized for beam line magnet power supplies. Modifications to permit advancing phase angle sufficiently to permit inversion were made on TransRex 500 kW power supplies and Ling 55 kW power supplies. The objective of these modifications was to rapidly reduce the current in magnet loads to zero upon command. The modifications required and the performance of the power supplies are discussed
Kansara, Seema; Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Bell, Nicholas P.; Mankiewicz, Kimberly A.; Feldman, Robert M.
2015-01-01
Purpose To evaluate the change in trabecular-iris circumference volume (TICV) after laser peripheral iridotomy (LPI) in primary angle closure (PAC) spectrum eyes Patients and Methods Forty-two chronic PAC spectrum eyes from 24 patients were enrolled. Eyes with anterior chamber abnormalities affecting angle measurement were excluded. Intraocular pressure, slit lamp exam, and gonioscopy were recorded at each visit. Anterior segment optical coherence tomography (ASOCT) with 3D mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after LPI. Forty-two pre-LPI ASOCT scans and 34 post-LPI ASOCT scans were analyzed using the Anterior Chamber Analysis and Interpretation (ACAI, Houston, TX) software. A mixed-effect model analysis was used to compare the trabecular-iris space area (TISA) changes among 4 quadrants, as well as to identify potential factors affecting TICV. Results There was a significant increase in all average angle parameters after LPI (TISA500, TISA750, TICV500, and TICV750). The magnitude of change in TISA500 in the superior angle was significantly less than the other angles. The changes in TICV500 and TICV750 were not associated with any demographic or ocular characteristics. Conclusion TICV is a useful parameter to quantitatively measure the effectiveness of LPI in the treatment of eyes with PAC spectrum disease. PMID:26066504
Using Digital Technology to See Angles from Different Angles. Part 2: Openings and Turns
Host, Erin; Baynham, Emily; McMaster, Heather
2015-01-01
Ever wondered how to use technology to teach angles? This article follows on from an earlier article published last year, providing a range of ideas for integrating technology and concrete materials with the teaching of angle concepts. The authors also provide a comprehensive list of free online games and learning objects that can be used to teach…
Variability of phase and amplitude fronts due to horizontal refraction in shallow water.
Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F
2018-01-01
The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.
Minimal see-saw model predicting best fit lepton mixing angles
International Nuclear Information System (INIS)
King, Stephen F.
2013-01-01
We discuss a minimal predictive see-saw model in which the right-handed neutrino mainly responsible for the atmospheric neutrino mass has couplings to (ν e ,ν μ ,ν τ ) proportional to (0,1,1) and the right-handed neutrino mainly responsible for the solar neutrino mass has couplings to (ν e ,ν μ ,ν τ ) proportional to (1,4,2), with a relative phase η=−2π/5. We show how these patterns of couplings could arise from an A 4 family symmetry model of leptons, together with Z 3 and Z 5 symmetries which fix η=−2π/5 up to a discrete phase choice. The PMNS matrix is then completely determined by one remaining parameter which is used to fix the neutrino mass ratio m 2 /m 3 . The model predicts the lepton mixing angles θ 12 ≈34 ∘ ,θ 23 ≈41 ∘ ,θ 13 ≈9.5 ∘ , which exactly coincide with the current best fit values for a normal neutrino mass hierarchy, together with the distinctive prediction for the CP violating oscillation phase δ≈106 ∘
Statistics of light deflection in a random two-phase medium
International Nuclear Information System (INIS)
Sviridov, A P
2007-01-01
The statistics of the angles of light deflection during its propagation in a random two-phase medium with randomly oriented phase interfaces is considered within the framework of geometrical optics. The probabilities of finding a randomly walking photon in different phases of the inhomogeneous medium are calculated. Analytic expressions are obtained for the scattering phase function and the scattering phase matrix which relates the Stokes vector of the incident light beam with the Stokes vectors of deflected beams. (special issue devoted to multiple radiation scattering in random media)
Variable angle asymmetric cut monochromator
International Nuclear Information System (INIS)
Smither, R.K.; Fernandez, P.B.
1993-09-01
A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS
Effect of electrostatic interactions on phase stability of cubic phases of biomembranes.
Li, Shu Jie; Masum, Shah Md; Yamashita, Yuko; Tamba, Yukihiro; Yamazaki, Masahito
2002-06-01
We investigated effect of electrostatic interactions due to surfacecharges on structures and stability of cubic phases of monoolein (MO)membrane using the small-angle X-ray scattering method. Firstly, wechanged the surface charge density of the membrane by usingdioleoylphosphatidic acid (DOPA). As increasing DOPA concentration in themembrane at 30 wt % lipid concentration, a Q(224) to Q(229) phasetransition occurred at 0.6 mol % DOPA, and at and above 25 mol %, DOPA/MOmembranes were in the L(α) phase. NaCl in the bulk phase reduced theeffect of DOPA. These results indicate that as the electrostaticinteractions increase, the most stable phase changes as follows: Q(224)⇒ Q(229) ⇒ L(α). The increase in DOPAconcentration reduced the absolute value of spontaneous curvature of themembrane, | H(0) |. Secondly, we changed the surface charge of themembrane by adding a de novo designed peptide, which has netpositive charges and a binding site on the electrically neutral membraneinterface. The peptide-1 (WLFLLKKK) induced a Q(224) to Q(229)phase transition in the MO membrane at low peptide concentration. As NaClconcentration increases, the MO/peptide-1 membrane changed from Q(229)to Q(224) phase. The increase in peptide-1 concentration reduced |H(0) |. Based on these results, the stability of the cubic phases and themechanism of phase transition between cubic phase and L(α) phase arediscussed.
Gonioscopy in primary angle closure glaucoma.
Bruno, Christina A; Alward, Wallace L M
2002-06-01
Primary angle closure is a condition characterized by obstruction to aqueous humor outflow by the peripheral iris, and results in changes in the iridocorneal angle that are visible through gonioscopic examination. Gonioscopy in these eyes, however, can be difficult. This chapter discusses techniques that might help in the examination. These include beginning the examination with the inferior angle, methods to help in looking over the iris, cycloplegia, locating the corneal wedge, indentation, van Herick estimation, examining the other eye, and topical glycerin. Finally, there is a discussion about the pathology associated with the closed angle, with emphasis on the appearance of iris bombé, plateau iris, and the distinction between iris processes and peripheral anterior synechiae.
Contact angle distribution of particles at fluid interfaces.
Snoeyink, Craig; Barman, Sourav; Christopher, Gordon F
2015-01-27
Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.
Sample similarity analysis of angles of repose based on experimental results for DEM calibration
Tan, Yuan; Günthner, Willibald A.; Kessler, Stephan; Zhang, Lu
2017-06-01
As a fundamental material property, particle-particle friction coefficient is usually calculated based on angle of repose which can be obtained experimentally. In the present study, the bottomless cylinder test was carried out to investigate this friction coefficient of a kind of biomass material, i.e. willow chips. Because of its irregular shape and varying particle size distribution, calculation of the angle becomes less applicable and decisive. In the previous studies only one section of those uneven slopes is chosen in most cases, although standard methods in definition of a representable section are barely found. Hence, we presented an efficient and reliable method from the new technology, 3D scan, which was used to digitize the surface of heaps and generate its point cloud. Then, two tangential lines of any selected section were calculated through the linear least-squares regression (LLSR), such that the left and right angle of repose of a pile could be derived. As the next step, a certain sum of sections were stochastic selected, and calculations were repeated correspondingly in order to achieve sample of angles, which was plotted in Cartesian coordinates as spots diagram. Subsequently, different samples were acquired through various selections of sections. By applying similarities and difference analysis of these samples, the reliability of this proposed method was verified. Phased results provides a realistic criterion to reduce the deviation between experiment and simulation as a result of random selection of a single angle, which will be compared with the simulation results in the future.
Sample similarity analysis of angles of repose based on experimental results for DEM calibration
Directory of Open Access Journals (Sweden)
Tan Yuan
2017-01-01
Full Text Available As a fundamental material property, particle-particle friction coefficient is usually calculated based on angle of repose which can be obtained experimentally. In the present study, the bottomless cylinder test was carried out to investigate this friction coefficient of a kind of biomass material, i.e. willow chips. Because of its irregular shape and varying particle size distribution, calculation of the angle becomes less applicable and decisive. In the previous studies only one section of those uneven slopes is chosen in most cases, although standard methods in definition of a representable section are barely found. Hence, we presented an efficient and reliable method from the new technology, 3D scan, which was used to digitize the surface of heaps and generate its point cloud. Then, two tangential lines of any selected section were calculated through the linear least-squares regression (LLSR, such that the left and right angle of repose of a pile could be derived. As the next step, a certain sum of sections were stochastic selected, and calculations were repeated correspondingly in order to achieve sample of angles, which was plotted in Cartesian coordinates as spots diagram. Subsequently, different samples were acquired through various selections of sections. By applying similarities and difference analysis of these samples, the reliability of this proposed method was verified. Phased results provides a realistic criterion to reduce the deviation between experiment and simulation as a result of random selection of a single angle, which will be compared with the simulation results in the future.
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M
2017-09-01
We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.
Variable-flip-angle spin-echo imaging (VFSE)
International Nuclear Information System (INIS)
Kasai, Toshifumi; Sugimura, Kazuro; Kawamitsu, Hideaki; Yasui, Kiyoshi; Ishida, Tetsuya; Tsukamoto, Tetsuji.
1990-01-01
T 2 weighted imaging provides images with high object contrast for pathologic conditions in which the water content of tissues is increased. The authors predicted theoretical analysis of the effects of changing flip angle, and analyzed the effects in MR imaging of both phantoms and humans. Variable flip angle spin echo MR imaging (VFSE) with a 1,000/80 (repetition time msec/echo time msec) can obtain T 2 weighted image when flip angle is smaller than 80 degrees. VFSE with 40 to 60 degrees flip angle have higher contrast than other flip angle images. Signal to noise ratio (S/N) of VFSE are 55% at a 30 degree, 76% at a 45 degree, 92% at a 60 degree respectively as compared with conventional spin echo image (2000/80, flip angle 90 degree). VFSE is applicable to obtain T 2 weighted image reduced imaging time. (author)
Sosiaalisen median merkitys mikroyrityksille - Case: TallFits Oy
Nousiainen, Ari; Koskivuori, Timo
2011-01-01
Tämän opinnäytetyön aiheena on sosiaalinen media mikroyritysten näkökulmasta. Työssä käsi-tellään sosiaalista mediaa ja markkinoinnissa tapahtunutta muutosta sekä niitä toimintatapoja, joita interaktiivinen mediaympäristö yrityksille ja sen asiakkaille tarjoaa. Työn tavoitteena on tuottaa tietoa sosiaalisen median hyödyistä ja haasteista mikroyrityksille ja lisätä koh-deyrityksemme TallFits Oy:n myyntiä ja löydettävyyttä. Tavoitteiden saavuttamiseksi opinnäytetyömme tarkoituksena oli tehd...